3

Step 0 Type/Structure/Features

Please refer to this for type, structure and features of Safety Relief Valve.

Step 1 Selection

Please look at the ID chart to choose the right products depending on the intended uses. Details are on the product page.

Step 2 Sizing

Please refer to nominal size selection value table or calculation formula of nominal size selection P. **3**-11 for selecting the suitable model and size.

Step 3 Attentions for usage

Be sure to check guidelines for optimal usage of Safety Relief Valve such as installation.

Type of Safety Valve and Its Main Purpose

What is safety valve?

Safety valve ensures safety of equipment and system by automatically operating to open its valve when inlet pressure rises and reaches set pressure, and to close valve when inlet pressure falls to set pressure. Full bore type safety valve The flow passage area at valve seat is bigger enough than the nozzle throat area at the inlet side.

Lift type safety valve

The lift of the valve is 1/40 or more and less than 1/4 of the inside diameter of valve seat, and the flow passage area of valve port becomes the smallest in the flow passage area when the valve disc is opened.

Relief valve

The valve is mainly applied to liquid, and automatically operates to open its valve disc when inlet pressure rises and reaches set pressure, and to close the valve disc when inlet pressure falls to set pressure.

Safety relief valve

The valve is mainly applied to steam, gas and liquid, and has both functions of safety valve and relief valve.

Main purpose

Lift type safety valve can be used when discharge amount is insufficient. Steam boiler needs this type.

Main purpose

It can be used as safety device for outlet side of pressure reducing valve, steam/air piping, pressure vessel.

Main purpose

It can be used for consecutive blow of cold and hot water piping, as safety device, or relief valve at outlet side of pump.

Main purpose

It can be used as safety device for piping and pressure vessel at line of steam/air/cold and hot water, or relief valve.

Operation of safety valve

· Structure and definition of safety valve and relief valve

Structure	Definition			
Closed type				
Closed lever type	Structure in which a part of blowout fluid is			
Closed handle type	not discharged nom other man outer.			
Open type	Structure in which a part of blowout fluid is			
Open lever type	discharged from other than outlet.			

· Set pressure of safety valve for alarm use (at outlet side of PRV for steam)

Set pressure of PRV (MPa)	Set pressure of safety valve (MPa)
0.1 or less	Set pressure pf PRV + 0.05 or more
More than 0.1, to 0.4 or less	Set pressure pf PRV + 0.08 or more
More than 0.4, to 0.6 or less	Set pressure pf PRV + 0.1 or more
More than 0.6, to 0.8 or less	Set pressure pf PRV + 0.12 or more
More than 0.8	Set pressure pf PRV + 15%

* When safety valve is installed for alarm use at the outlet side of PRV, there is no laws or regulations specified to comply with. In this case, select a safety valve with discharge capacity around 10% of maximum flow rate of PRV.

Lift type Safety Valve -AL-150 Series-

Usages are as follows:

Safety device for pressure vessel or measuring

Versatile safety relief valve can be used for fluid such as steam, air, water or oil. Long life and high corrosion resistance due to stainless steel used for adjusting spring, valve and valve seat.

Small, lightweight, simple structure, usable for various fluid, versatile type

Variation for various requirement

Lever type AL-150 type

High pressure type AL-150H type

Soft seat type AL-150T type

Handle type soft seat type AL-150TR type

Stainless steel made AL-140, AL-140H type

Full Bore Type Safety Valve –AF-5 Series–

Usages are as follows:

Use as safety device for steam boiler, various pressure vessel or measuring instrument. AF-5 series safety valve is full bore type and small, lightweight (50 % of conventional product), high capacity and high quality type.

Operational Check

Due to lever type, manual discharge inspection can be made. In addition, lever position can be rotated freely.

High Sealing Design Valve prevents valve leakage of heat expansion due to feather touch shape. Heat treated and long life.

Compact Design

Due to spring case shape discharging fluid effectively, this type has small shape but large discharge amount.

Design considering piping arrangement and construction!

Stopper for over tightening For product function protection

Fixing Screw For loosening protection of outlet side piping

Relief type Safety Valve -AL-280 Series-

Relief valve for the purpose of pressure regulation of pump.

Operation

(dash-pot)

Sealed, Safety Safety is accomplished without possibility of fluid outside leakage during operation. **Smooth and Secure** Long Service Life Due to adoption of special valve Long service life because stainless steel is used for adjusting structure, it has profound impact on the line with large pulsation or spring, valve, and valve seat. pressure fluctuation. Chattering or hunting can be prevented. Structure of wetted part Without popping action against fluid pressure change, the structure can discharge continuously. Safety is increased by making spring body and valve body FCD which has higher strength.

Variation for various requirements

AL-27

AL-260

AL-260R

AL-250

Safety Relief Valve ID-Charts

Safety Relief Valve

	Model	Туре	Fluid	Material (Body)	Press. (MPa)	Max. Temp. (°C)	Connection	Nominal Size	Feature	Page
	AL -150		Steam, Air		0.05-1.0	220°C		15-504	Stainless steel spring High durability	3-14
P			Cold and hot water, Oil		0.00 1.0	150°C		10 00/1	· General purpose	
A	AL-150H		Steam, Air		1.0-1.6	220°C		15-50A	· High pressure type	3-19
			Cold and hot water, Oil			150°C			of AL-150	
ł	AL-150L		Steam, Air		0.05-1.0	220°C		15-50A	Lever type of AL-150	3-20
	AL-150T	Lift type	Air, Cold and hot water, Oil	CAC406	0.05-1.0	120°C	JIS Rc	15-50A	 Soft seat type of AL-150 Leakage "Zero" by O ring seat of fluoro-rubber 	3-15
	AL-150T-N		Cold and hot water		0.05-1.0	100°C		15-50A	 Lead-free product For beverage 	3-15
ļ	AL-150TR		Cold and hot water, Oil		0.05-1.0	120°C		15-50A	• Handle type of AL-150T	3-16
ŀ	AL-150TML		Air, Cold and hot water, Oil		0.05-1.0	120°C		15-50A	• Lever type of AL-150T	3 -17
	AL 140		Steam, Air	SCS14A	0.05.1.0	220°C		15 504	· All stainless steel	2 00
	AL-140		Cold and hot water, Oil	or SCS13	0.05-1.0	150°C		15-5UA	AL-150	3-22
A.	AI -140H	Lift type	Steam, Air	SCS13	1 0-2 0	220°C	IIS Bo	15-504	· High pressure type	3-22
		Lint type	Cold and hot water, Oil	00010	1.0-2.0	150°C	010 110	13-30A	of AL-140	5-22
	AL-140T		Air, Cold and hot water, Oil	SCS14A or SCS13	0.05-1.6	120°C		15-50A	 Soft seat type of AL-140 Leakage "Zero" by O ring seat of fluoro-rubber 	3-24
	AL 47	1.00.0	Steam, Air	FOD 450	0.05.1.0	220°C	110 D-	15 504		2 01
10	AL-17	Lift type	Cold and hot water, Oil	FCD450	0.05-1.6	150°C	JIS KC	15-50A		3-31

* Contact us for any other fluid or connection than the above.

	Model	Туре	Fluid	Material (Body)	Press. (MPa)	Max. Temp. (°C)	Connection	Nominal Size	Feature	Page					
	41.40		0	500450	0.05.4.0	20020	10.5	15 504	· Lever type						
	Lift type	Steam	FCD450		220 C	JIS RC	15-50A	· Without lever	3-33						
	AL-300		Steam		0.05-1.0	220°C	JIS 10KFF	15-50A		3-37					
	AL-301		Steam		0.05-1.6	220°C	JIS 10KFF *1 (JIS 16KFF)	15-50A	 Stainless steel wetted parts type of AL-300 	3-37					
	AL-300T		Air	ECD450	0.05.1.0	150°C		15 504	· Soft seat type of	2 20					
2.	AL-3001		Litt type	сит туре		Cold and hot water, Oil		0.05-1.0	150°C	JIS IUKFF		AL-300	0-30		
	AL-301T		Air		0.05.4.0	150°C	JIS 10KFF		· Stainless steel						
			Cold and hot water, Oil		5.00 1.0	150°C	*1 (JIS 16KFF)	15-50A	AL-300	3-30					
A	AL 4		Otaarra		0.05-1.5	0000	JIS 10KFF	05 1504		2 45					
	AL-4		Steam	500450	For 150A, maximum press. 0.8 MPa	1 (JIS	*1 (JIS 16KFF)	65-15UA		3-45					
Д						1		Air, Cold		0.05-1.0				Coff cost time of	
	AL-4T		and hot water, Oil		For 150A, maximum press. 0.8 MPa	150°C	*1 (JIS 16KFF)	65-150A	AL-4	3 -45					
	AL-4S	Lift type	Steam	500450	0.05-2.0	220°C	JIS 20KFF	65-100A		3-47					
	AL-4ST		Air, Cold and hot water, Oil	FGU45U	0.05-2.0	150°C	JIS 20KFF	65-100A	• Soft seat type of AL-4S	3-47					
肁	AL 5	L-5 Lift type Steam FCD4		0.05-1.0			00.054		2 50						
AL-5	AL-5		Lift type	Lift type	Lift type	Lift type	Lift type	Lift type	Steam	FGD450	0.05-1.5	220°C	JIS 10-16KFF	20-25A	· Lever type

Step

*1 Connection when applying pressure is more than 1.0 MPa * Contact us for any other fluid or connection than the above.

Safety Relief Valve ID-Charts

3		Model	Туре	Fluid	Material (Body)	Press. (MPa)	Max. Temp. (°C)	Connection
ief Valve		AL-6	Lift type	Steam	FCD450	0.05-1.5	220°C	JIS 10·16KFF
Reli		AL 01		Steam, Air		0.05.4.0	220°C	
fety	_	AL-31	- Lift type	Cold and hot water, Oil	SCS13	0.05-1.0	150°C	JIS 10KFF
Sa	S	AL -31H		Steam, Air			220°C	JIS 16·20RF
		AL-31H		Cold and hot water, Oil		1.0-2.0	150°C	
		AL-260	Poliof type	ef type hot water, Oil	CAC406	0.05.1.0	120°C	
	Į	AL-260R	Relief type		0.0400			
		AL-250	Deliathan	Cold and	SCS14A	0.05.1.0	100%0	10.0-
	H	AL-250R	Relief type	Oil	SCS13	0.05-1.0	1200	JIS RC
		AL-27	Relief type	Cold and hot water, Oil	FCD450	0.05-1.6	120°C	JIS Rc

S			Steam, Air			220°C			· High pressure type	2 40
	AL-31H		Cold and hot water, Oil		1.0-2.0	150°C	JIS 16·20RF	15-50A	of AL-31	3-43
	AL-260		Cold and	CAC406	0.05 1.0	10000		15-50A	• For pump relief	<mark>3</mark> -27
Ī	AL-260R	Relief type	Oil	CAC406	0.05-1.0	120 C	JIS KC	15-50A	• Handle type of AL-260 • For pump relief	<mark>3</mark> -27
	AL-250	-Relief type	Cold and	SCS14A	0.05.1.0	100°0	10.5-	15-50A	 For pump relief All stainless steel made 	3-26
			Relief type	Oil	or SCS13	0.05-1.0	120 C	JIS RC	15-50A	• Handle type of AL-250 • For pump relief
	AL-27	Relief type	Cold and hot water, Oil	FCD450	0.05-1.6	120°C	JIS Rc	15-50A	 For pump relief High pressure type 	<mark>3</mark> -29
	AL-280	Relief type	Cold and hot water, Oil	FCD450	0.05-1.0	120°C	JIS 10KFF	15-50A	 Flanged type For pump relief 	3 -40
	AL-24		Cold and hot water	0 1-0 7	60°C	110 D-	15-25A	 Diaphragm type Quick opening and closing 	3-35	
	AL-24F		Cold and hot water, Oil	070400	0.1-0.7	120°C	010 110	15-25A	 FKM (viton) type of AL-24 High temperature type 	-00
Contact us	for any other	fluid or con	nection than	the above						

Nominal Size

65-150A

15-50A

Feature

Large size type of AL-5

Flanged type All stainless steel

Lever type

made

Page

3 -51

3 - 43

* C(ction than the above.

	Model	Туре	Fluid	Material (Body)	Press. (MPa)	Max. Temp. (°C)	Connection	Nominal Size	Feature	Page
	AF-5	Fullboro	Steam Air	CAC406	0.1-1.6		Inlat IIS P	20-50A	 Full bore type, for general purpose Lever type 	<u>3</u> -53
4	AF-5S	type	Steam, Air	SCS13	0.1-1.0	220°C	Outlet JIS Rc	20-50A	 All stainless steel type of AF-5 	3-53
	AF-1	Full bore type	Steam	FCD450	0.18-1.6	220°C	Inlet JIS R Outlet JIS Rc	20-50A	· Lever type	3-57
	AF-2	Full bore type	Steam	FCD450	0.18-1.6	220°C	Inlet JIS 10K RF *1 (Inlet JIS 20K RF) Outlet JIS 10K FF	65-80A	· Lever type	3-58
	AF-4	Full bore	Steam,	500 450		00000	JIS 10K FF	25-150A	· Lever type	3-55
	AF-4M	type	Air	FCD450	0.1-1.0	220 C	or JIS 10K RF	25-150A	• Without lever	3-55
	AF-7	Full bore	Steam, Air		0.1.1.0	350°C	Inlet JIS 10K RF	25-100A	· Lever type	3-59
	AF-7M	type	Air	SCPHZ	0.1-1.0	300°C	Outlet JIS 20K FF	25-100A	• Without lever	3-59
	AF-6H	6H SCPH2	05000	Inlet JIS 20K RF	25-100A	 Examined product of High Pressure Gas Safety Act 	3-61			
	AF-6HS	type	AI	SCS13	0.1-1.90	2000	Outlet JIS 10K FF	25-100A	• Examined product of High Pressure Gas Safety Act	3-61
	AF-9EN	Full bore type	Steam, Air	Equivalent to FC250	0.045-1.0	250°C	Inlet BSEN PN16 Outlet BSEN PN10	20-150A	Conforming product to ISO 4126-1	3-63

*1 Connection when applying pressure is more than 1.0 MPa * Contact us for any other fluid or connection than the above.

Step

F

(When 25% accumulation)

A: Flow area (mm²) K: 0.7 (Flow rate coefficient) G: Specific gravity P: Opening pressure (MPa)

 $V = \frac{AK}{12.4\sqrt{\frac{G}{P}}}$

AL-150, 150T, 140, 140T, 150TML, 150TR Calcuration formula for liquid

 $V=0.161 A K \sqrt{PG}$

V: Discharge capacity (m³/h)

- A: Flow area (mm²)
- K: Flow rate coefficient:
 - 0.5 (when set pressure is 0.1 MPa or less)
 - 0.6 (when set pressure is more than 0.1 MPa)
- P: Pressure to determine discharge capacity (MPa):
- Opening pressure x 1.25
- G: Specific gravity

Calculation formula for Viscosity correction

First, calculate the discharge capacity (V) without considering viscosity. Next, find viscosity index (Iv).

$$Iv = \frac{72780}{Mcst} \left(\frac{\Delta P}{G}\right)^{\frac{1}{4}} v^{\frac{1}{2}}$$

Obtain K, by using Fig.1 viscosity correction curve, from lv calculated in the above formula.

The calculated discharge capacity (V) divided by this K is the value of the corrected flow rate.

Corrected discharge capacity: V' = V/K (m³/h)

Step 2

Start to Discharge Pressure	: The inlet pressure at which the safety valve actually starts to discharge and outflow of an extremely small quantity of fluid (steam or gas) is detected at the outlet. The extremely small quantity means a minimum amount of visually or audibly detectable steam, or a minimum amount of gas that can be detected audibly or by using soap solution. The outflow does not mean the leakage from the valve seat.	Back Pressure	 The pressures existing at the outlet of the safety valve. There are two types as the following: (a) Accumulated back pressure: The pressure existing at the outlet of a safety valve caused by the resistance of the outlet side when the safety valve has been relieved. (b) Existing back pressure: The pressure which has already been superimposed at the outlet before the safety valve is relieved. 		
Opening Pressure	: The inlet pressure at which the	Theoretical Discharge	: The discharge capacity calculated		
	valve disc "Pops."	Capacity	supposing that the fluid is free		
	"Popping" is an action of discharging fluid inside the valve due to the sudden rise of the valve disc.		coefficient is 1, and that the valve discharges the ideal gas of fixed specific heat with isentropic change.		
0 · 1		Certified Capacity	: The certified discharge capacity		
Set Pressure	: The opening pressure or start to discharge pressure determined in designing.		tor each satety valve, according to any of the followings: (a) Measured Discharge Capac x Derated Coefficient		
Closing Pressure	: The inlet pressure fallen down to the level at which the valve disc and the valve seat are in contact and the lift becomes zero. It is also called "reseating pressure."		 (b) Theoretical Discharge Capacity x Derated Coefficient (c) Theoretical Discharge Capacity x Certified Derated Coefficient of Discharge 		
Blowdown	: The difference between opening	Lift	: The amount of travel, in axial		
Over Pressure	pressure or start to discharge pressure and closing pressure.		direction of the valve or valve rod, away from the closed position to the opened position during discharge of the safety valve		
	exceeds the set pressure of the		: The lift determined in designing,		
	safety valve.	Rated Lift			
Allowable Over Pressure	: The over pressure within the allowable range.		at which the certified capacity is exercised.		
		Seat Diameter	: The inside diameter of setting		
Coefficient of Discharge	: The coefficient used to calculate the actual discharge capacity		surface of a valve with valve seat.		
	from the theoretical discharge	Throat Diameter	: The diameter of the smallest		
	capacity. The coefficient is the ratio between the two capacities, and it counts the frictional resistance.		portion of a nozzle from intake opening of fluid to valve seat face.		
		Throat Area	: The flow passage area calculated		
Certified Derated	: The coefficient of discharge to be applied to calculate the certified		using the throat diameter.		
	capacity.	Seat Flow Area	: The cylindrical or conical flow passage area between the valve		
Flow Rating Pressure	: The inlet pressure taken as the basis for determining the certified capacity of the safety valve, which is the sum of the set		and the valve seat secured when the valve lifts up. It is also called "curtain area."		
	pressure and the allowable over	Flow Area	: The area of the part which		
	pressure.		determines the flow capacity that passes through a safety valve and is used to calculate the certified capacity.		

Definition (extract from "Safety devices for protection against excessive pressure - Direct spring loaded safety valves for steam and gas service")

www.yoshitake.jp

Guidelines for Installing Safety Valve

Pipe Mount for Installing Safety Valve

- Pipe mount of a safety valve should have sufficient strength and rigidity against compression, shear stress, and bending stress caused by reaction because the pipe mount is subject to the reaction which is caused along the center line of outlet of a blowout pipe connected to the safety valve in the direction contrary to the discharging direction.
- 2. The pressure loss in the pipe mount for a safety valve makes the discharge quantity decreased and the function of the safety valve unstable. Therefore a safety valve should be installed vertically as near as possible to a vessel, a header, etc. (See Fig.1.)

Exhaust Pipe of Safety Valve

An exhaust pipe and an drip pan elbow should be installed so that a safety valve may not be subject to stress caused by the thermal expansion of a boiler or equipment and by the expansion or contraction of a discharge pipe due to the thermal action of blowout of the safety valve. (See Fig.1.)

The inner diameter of a exhaust pipe should be as larger as possible than that of an outlet pipe of a safety valve, and the exhaust pipe should be lead to outside or a safe place.

Installation of Safety Valve

- Do not remove the blind plate before completing the preparation for installation so that any foreign matter does not come into a safety valve.
- Be sure to remove foreign matter completely from equipment, pipes, and vessels by washing their insides before installation.
- 3. In installing a safety valve, do not apply a pipe wrench, etc. to the places other than the specified ones.
- 4. Do not apply any force from the outside.
- 5. Equip a valve casing and a exhaust pipe with a drain pipe for each to prevent raindrops and dirt, etc. from accumulating.

- 1. Do not disassemble or readjust the product unnecessarily because pressure adjustment is completed. If disassembling and readjusting the product unnecessarily, it is dangerous because function of the product is not accomplished, such as not discharged at set pressure, or discharge at less than set pressure.
- 2. Most of problems with the pressure reducing valve are caused by foreign substances and scale in the piping. Be sure to remove them before using the product. Note that the customer is required to pay repair charge for any defect that occurs due to foreign substance inside piping or scale.
- 3. Install the product so that the product cannot receive excessive load, torque or vibration.
- 4. Install the product correctly, checking fluid flow direction and direction of inlet and outlet.

Caution during use

SAFETY VALVE

SAFETY VALVE

- 1. Do not use the product for device or equipment which cannot accept valve seat leakage because the product which do not use soft seat on valve seat face have valve seat leakage within acceptable range.
- Except for handle type, do not rotate adjusting screw. If doing so, the product may discharge at lower than set pressure, or not discharge at set pressure.
- Do not remove the cap unnecessarily since without cap, fluid may discharge from adjusting screw part.

Caution at disassembly and inspection

1. Ask professionals or us for disassembly and inspection. Residual pressure may lead to injury or scalds.

Direct the top end of a relief pipe to the

The inner diameter of a pipe mount should be equal to or Make it round. bigger than the nominal size of a safety valve.

Fig. 1

SAFETY VALVE

Fix an exhaust pipe to a

building or other stable

AL	-1	50	
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage)	

Features

- 1. Versatile type, compatible with fluids such as steam, air, water, and oil.
- 2. Achieved the highest performance by segmentalize the pressure range and finished by ultra-precision technique.
- 3. The trim parts (valve and valve seat) and adjusting spring are made of stainless steel. Used for the trim parts is SCS14A (equivalent to SUS316) with outstanding corrosion resistance.
- 4. Closed structure prevents fluid leakage.

Specifications

	Structure	Closed type
Application		Steam, Air, Water, Oil, Other non-dangerous fluids
Wo	rking pressure	0.05-1.0 MPa
Working temperature		5-220°C *1
	Spring case	Bronze
Material Valve, Valve seat		Stainless steel (SCS14A)
Adjusting spring		Stainless steel
Connection		JIS Rc screwed

*1 The maximum temperature is 150°C when using for water, oil, or other liquids.

• Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nominal sizo		Dim	Flow area	Maight (kg)				
NOTITIAI SIZE	d	D	L	H1	Н	<i>π</i> Dℓ (mm²)	vveigrit (kg)	
15A	Rc 1/2	16	34	40	128	20.1	0.7	
20A	Rc 3/4	21	38	43	128.5	34.6	0.8	
25A	Rc 1	26	43	51.5	144.5	53.0	1.1	
32A	Rc 1-1/4	33	50	61.5	181.5	93.3	1.8	
40A	Rc 1-1/2	41	60	60	205	135.2	2.8	
50A	Rc 2	51	75	76	245.5	208.2	4.7	

AL	-1	50T, 150T-N
Full bore type	Lift type	Safety valve Relief valve
Safety relief valve	Lever type	Closed type Dash-pot structure

Salety feller valve		Closed type Dasil-pot structure
Handle type	Stainless	High pressure gas testing products
Diaphragm	Non-leakage	

Features

- 1. Safety relief valve with excellent airtightness ensured by the valve seat incorporating soft seat. Most suitable for applications where valve seat leakage is not tolerated.
- 2. The trim parts (valve and valve seat) and adjusting spring are made of stainless steel. Used for the trim parts is SCS14A (equivalent to SUS316) with outstanding corrosion resistance.
- 3. Simple structure and easy to handle.
- 4. Closed structure prevents fluid leakage.

Specifications

	Model	AL-150T	AL-150T-N			
S	Structure	Closed	d type			
Ap	pplication	Air, Cold and hot water, Oil, Other non-dangerous fluids *	Cold and hot water			
Working pressure		0.05-1.	0 MPa			
Workin	ng temperature	5-120°C	5-100°C			
	Spring case	Cast bronze	Cast bronze (NPb-treated)			
Matorial	Valve, valve seat	Cast stainless steel (SCS14A)				
IVIALEITAI	Adjusting spring	Stainless steel				
	O-ring	FKM				
Co	Connection JIS Rc screwed					

* Please contact us when using for oil.

· Please refer to the chart in P.3 -76 for set pressure range.

Dimensions and Weights

Nominal size		Di	Flow area	Moight (kg)			
Norminal Size	d	D	L	H ₁	н	πDℓ (mm²)	
15A	Rc 1/2 16		34	40	128	20.1	0.7
20A	Rc 3/4	21	38	43	128.5	34.6	0.8
25A	Rc 1	26	43	51.5	144.5	53.0	1.1
32A	Rc 1-1/4	33	50	61.5	181.5	93.3	1.8
40A	Rc 1-1/2	41	60	60	205	135.2	2.8
50A	Rc 2	51	75	76	245.5	208.2	4.7

Soft seat is used for the trim parts!

Soft seat (O-ring) is used for the trim parts, ensuring the reliable airtightness of the valve seat.

www.yoshitake.jp

AL-150TR

Full bore type	Lift type	Safety valve Relief valve
Safety relief valve	Lever type	Closed type Dash-pot structure
Handle type	Stainless	High pressure gas testing products
Diaphragm	Non-leakage	

Features

- 1. Handle type relief valve, pressure can be changed easily.
- 2. Excellent airtightness ensured by the valve seat incorporating soft seat. Most suitable for applications where valve seat leakage is not tolerated.
- The trim parts (valve and valve seat) and adjusting spring are made of stainless steel. Used for the trim parts is SCS14A (equivalent to SUS316) with outstanding corrosion resistance.
- 4. Simple structure and easy to handle.
- 5. Closed structure prevents fluid leakage.

Specifications

Structure		Closed type with a handle			
Application		Cold and hot water, Oil, Other non-dangerous fluids *			
Working pressure		0.05-1.0 MPa			
Maximum temperature		120°C			
	Spring case	Cast bronze			
Motorial	Valve, valve seat	Stainless steel (SCS14A)			
Material	Adjusting spring	Stainless steel			
	O-ring	FKM			
Connection		JIS Rc screwed			

* Please contact us when using for oil.

· Please refer to the chart in P.3 -76 for set pressure range.

Dimensions and Weights

Nominal size		Dii	Flow area	Weight (kg)				
	d	D	L	H ₁	Н	πDℓ (mm²)	weigilt (Kg)	
15A	Rc 1/2	16	34	40	184	20.1	1.0	
20A	DA Rc 3/4 21 5A Rc 1 26		38	43	186	34.6	1.1	
25A			43	51.5	203	53.0	1.4	
32A	A Rc 1-1/4 3		50	61.5	239	93.3	2.1	
40A	40A Rc 1-1/2 4		60	60	276	135.2	3.2	
50A	Rc 2	51	75	76	314	208.2	5.1	

Soft seat is used for the trim parts!

Soft seat (O-ring) is used for the trim parts, ensuring the reliable airtightness of the valve seat.

AL-150TML

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Features

- Lever type safety relief valve. A discharge inspection can be manually performed when the difference between the set pressure and the inlet pressure is as shown in Table 1 below.
- 2. Excellent airtightness ensured by the valve seat incorporating soft seat. Most suitable for applications where valve seat leakage is not tolerated.
- 3. The trim parts (valve and valve seat) and adjusting spring are made of stainless steel. Used for the trim parts is SCS14A (equivalent to SUS316) with outstanding corrosion resistance.
- 4. Simple structure and easy to handle.
- 5. Closed structure prevents fluid leakage.

[Table 1] Required differential pressure at a discharge inspection

Nominal size	Difference between set pressure and inlet pressure
15A-25A	1.0 MPa or less
32A, 40A	0.6 MPa or less
50A	0.4 MPa or less

Specifications

	Structure	Closed type with a lever				
	Application	Air, Cold and hot water, Oil, Other non-dangerous fluids *				
Working pressure		0.05-1.0 MPa				
Maximum temperature		120°C				
	Spring case	Cast bronze				
Motorial	Valve, valve seat	Stainless steel (SCS14A)				
Material	Adjusting spring	Stainless steel				
	O-ring	FKM				
	Connection	JIS Rc screwed				

* Please contact us when using for oil.

• Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nominal size		Dir	Flow area	Mojabt (ka)				
	d	D	L	H ₁	Н	πDℓ (mm²)	weight (Kg)	
15A	15A Rc 1/2 16 20A Rc 3/4 21		34	40	157	20.1	0.8	
20A			38	43	158	34.6	0.9	
25A	Rc 1	26	43	51.5	174	53.0	1.3	
32A	32A Rc 1-1/4 33 40A Rc 1-1/2 41 50A Rc 2 51		50	61.5	212	93.3	1.9	
40A			60	60	246	135.2	3.0	
50A			75	76	286	208.2	4.9	

Certified Capacity Table

· AL-150 for steam (saturation temperature) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	15	20	29	40	50	60	70	80	90	100	109
20A	27	35	51	69	87	104	121	138	155	172	189
25A	42	54	78	105	133	159	186	212	237	263	289
32A	70	91	132	178	224	268	313	356	400	443	487
40A	105	136	198	266	335	402	468	534	599	664	729
50A	163	211	306	411	518	621	723	824	924	1025	1126

· AL-150 · 150T · 150TML for air (20°C) <Pressure vessel structure standard>

AL-150 · 1501 · 1501 WL for air (20 C) <pressure standard="" structure="" vessel=""> (kg/h)</pressure>											
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	25	33	48	65	81	98	114	131	147	164	181
20A	44	57	83	111	140	169	197	226	254	283	311
25A	67	87	127	171	215	258	302	346	390	433	477
32A	113	147	214	288	362	435	509	582	656	730	803
40A	169	221	321	431	542	652	762	872	982	1093	1203
50A	262	341	496	666	836	1006	1176	1346	1516	1687	1857

· AL-150 · 150T · 150TML · 150TR for water (accumulation: 25%) <Yoshitake standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	0.4	0.5	0.9	1.1	1.3	1.5	1.6	1.8	1.9	2.0	2.1
20A	0.6	0.9	1.6	2.0	2.3	2.6	2.8	3.1	3.3	3.5	3.7
25A	1.0	1.5	2.5	3.1	3.6	4.0	4.4	4.7	5.1	5.4	5.7
32A	1.8	2.6	4.5	5.5	6.3	7.1	7.8	8.4	9.0	9.5	10.0
40A	2.7	3.8	6.5	7.9	9.2	10.3	11.3	12.2	13.0	13.8	14.6
50A	4.1	5.9	10.0	12.3	14.2	15.9	17.4	18.8	20.1	21.3	22.4

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

Soft seat is used for the trim parts!

Soft seat (O-ring) is used for the trim parts, ensuring the reliable airtightness of the valve seat.

(kg/h)

(m³/h)

3	
Valve	
Relief	
fety	

Sa

AL	-1	50	H
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Features

- 1. Popping structure ensures reliable discharge.
- 2. Used for the trim parts is SCS14A (equivalent to SUS316) with outstanding corrosion resistance.
- 3. Simple internal structure facilitates adjustment, maintenance and handling.
- 4. Closed structure prevents fluid leakage.

Specifications

	Structure	Closed type			
	Application	Steam, Air, Cold and hot water, Oil, Other non-dangerous fluids			
W	orking pressure	1.0-1.6 MPa			
Maximum temperature		220°C *			
Motorial	Spring case	Cast bronze			
wateria	Valve, valve seat	Cast stainless steel (SCS14A)			
	Connection	JIS Rc screwed			

* The maximum temperature is 150°C when using for water, oil, or other liquids.

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nominal size	Dimension	Flow area	Weight			
Norminal Size	di x D x do	L	H1	Н	πD ℓ (mm²)	(kg)
15A	Rc 1/2 x 16 x Rc 3/4	36	42	126	22.9	0.8
20A	Rc 3/4 x 21 x Rc 1	38	47	131	39.5	0.9
25A	Rc 1 x 26 x Rc 1-1/4	46	55.5	147.5	60.6	1.3
32A	Rc 1-1/4 x 33 x Rc 1-1/2	54	61.5	167.5	97.7	1.9
40A	Rc 1-1/2 x 41 x Rc 2	63	67	193.5	150.8	2.9
50A	Rc 2 x 51 x Rc 2-1/2	77	80	241.5	233.4	5.0

• The nominal size and size of screwed end connection are different. The size of screwed end connection have to be one size bigger.

AL	-1	50L
Full bore type	Lift type	Safety valve Relief valve
Safety relief valve	Lever type	Closed type Dash-pot structure
Handle type	Stainless	High pressure gas testing products
Diaphragm	Non-leakage	

Features

- 1. The trim parts (valve and valve seat) and adjusting spring are made of stainless steel. Used for the trim parts is SCS14A (equivalent to SUS316) with outstanding corrosion resistance.
- 2. Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure.

	Structure	Open type with a lever				
Application		Steam, Air				
Working pressure		0.05-1.0 MPa				
Maximum temperature		220°C				
Matarial	Spring case	Bronze				
Material	Valve, Valve seat	Stainlesssteel (SCS14A)				
Connection		JIS Rc screwed				

• Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nominal size		Dim		Flow area	Maight (kg)			
NOTITIAL SIZE	d	D	L	H1	Н	$\pi D\ell (mm^2)$	weight (kg)	
15A	Rc 1/2	16	34	40	148	20.1	0.8	
20A	Rc 3/4	21	38	43	148	34.6	0.9	
25A	Rc 1	26	43	51.5	165	53.0	1.2	
32A	Rc 1-1/4	33	50	61.5	201	93.3	1.9	
40A	Rc 1-1/2	41	60	60	226	135.2	2.9	
50A	Rc 2	51	75	76	266	208.2	4.8	

3

3 -20

www.yoshitake.jp

Certified Capacity Table

· AL-150L for steam (saturation temperature) <Pressure vessel structure standard>

• AL-150L for steam (saturation temperature)					<pressure standard="" structure="" vessel=""> (kg</pressure>						(kg/h)
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	15	20	29	40	50	60	70	80	90	100	109
20A	27	35	51	69	87	104	121	138	155	172	189
25A	42	54	78	105	133	159	186	212	237	263	289
32A	70	91	132	178	224	268	313	356	400	443	487
40A	105	136	198	266	335	402	468	534	599	664	729
50A	163	211	306	411	518	621	723	824	924	1025	1126

(kg/h)

 (m^3/h)

AL-150H for steam (saturation temperature)

Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	115	126	136	146	156	167	177
20A	199	217	235	252	270	288	306
25A	306	333	360	387	415	442	469
32A	493	537	581	625	669	713	757
40A	761	830	897	965	1033	1100	1168
50A	1179	1284	1389	1494	1599	1703	1808

· AL-150L for air (20°C) <Pressure vessel structure standard>

· AL-150L to	IL-150L for air (20 C) <pressure standard="" structure="" vessel=""> (kg/h)</pressure>										
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	25	33	48	65	81	98	114	131	147	164	181
20A	44	57	83	111	140	169	197	226	254	283	311
25A	67	87	127	171	215	258	302	346	390	433	479
32A	113	147	214	288	362	435	509	582	656	730	803
40A	169	221	321	431	542	652	762	872	982	1093	1203
50A	262	341	496	666	836	1006	1176	1346	1516	1687	1857

· AL-150H for air (20°C)

• AL-150H fo	AL-150H for air (20 C) (kg/h)										
Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6				
15A	190	208	225	243	260	278	295				
20A	328	359	389	419	449	479	509				
25A	504	550	597	643	689	735	782				
32A	813	888	962	1037	1111	1186	1260				
40A	1255	1370	1485	1600	1715	1831	1946				
50A	1943	2121	2299	2477	2655	2833	3011				

· AL-150H for water (accumulation: 25%) <Yoshitake standard>

Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	2.4	2.5	2.7	2.8	2.9	3.0	3.1
20A	4.2	4.4	4.6	4.8	5.0	5.2	5.3
25A	6.5	6.8	7.1	7.4	7.7	8.0	8.2
32A	10.5	11.0	11.5	12.0	12.4	12.9	13.3
40A	16.2	17.0	17.8	18.5	19.2	19.9	20.6
50A	25.2	26.4	27.6	28.7	29.8	30.8	31.8

· Please refer to P.3-11 for the calculation procedure of nominal size selection.

AL-140,140H

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Features

- 1. Safety relief valve of all stainless steel made. Used for the trim parts is SCS14A (equivalent to SUS316) with outstanding corrosion resistance.
- 2. Popping structure ensures reliable discharge.
- 3. Simple structure and easy to handle.
- 4. Closed structure prevents fluid leakage.

AL-140H

Specifications

	Model	AL-140	AL-140H				
	Structure	Closed type					
	Application	Steam, Air, Cold and hot water, Oil, Other non-dangerous fluids					
W	orking pressure	0.05-1.0 MPa	1.0-2.0 MPa				
Max	imum temperature	220°C *					
Matarial	Spring case	Cast stainless steel					
wateria	Valve, valve seat	Cast stainless steel (SCS14A)					
	Connection	JIS Rc screwed					

* The maximum temperature is 150°C when using for water, oil, or other liquids.

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

· AL-140

Neminalaiza		Dir	mension (m	ım)		Flow area	Moight (kg)	
Nominal size	d	D	L	H1	Н	$\pi D\ell (mm^2)$	weight (kg)	
15A	Rc 1/2	16	34	40	128.5	20.1	0.7	
20A	Rc 3/4	21	38	42	129	34.6	0.8	
25A	Rc 1	26	43	51	148	53.0	1.1	
32A	Rc 1-1/4	33	50	61.5	182	93.3	2.0	
40A	Rc 1-1/2	41	60	64	206	135.2	3.0	
50A	Rc 2	51	75	76	246.5	208.2	5.0	

· AL-140H

Nersinglains	Dimension (mm)			Flow area	Weight (kg) 0.9 1.0 1.5 2.5 4.6 8.8
Nominal size	di x D x do	L	H ₁	Н	<i>π</i> Dℓ (mm²)	(kg)
15A	Rc 1/2 x 16 x Rc 3/4	36	42	126.5	20.1	0.9
20A	Rc 3/4 x 21 x Rc 1	38	46	130.5	34.6	1.0
25A	Rc 1 x 26 x Rc 1-1/4	46	55	150.5	53.0	1.5
32A	Rc 1-1/4 x 33 x Rc 1-1/2	54	61.5	195	93.3	2.5
40A	Rc 1-1/2 x 41 x Rc 2	63	67	227.5	135.2	4.6
50A	Rc 2 x 51 x Rc 2-1/2	77	80	303.5	208.2	8.8

• The nominal size and size of screwed end connection are different. The size of screwed end connection have to be one size bigger.

Safety Relief Valve 😡

Certified Capacity Table

· AL-140 for steam (saturation temperature) <Pressure vessel structure standard>

AL-140 for steam (saturation temperature) <pressure standard="" structure="" vessel=""> (kg/h)</pressure>											
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	15	20	29	40	50	60	70	80	90	100	109
20A	27	35	51	69	87	104	121	138	155	172	189
25A	42	54	78	105	133	159	186	212	237	263	289
32A	70	91	132	178	224	268	313	356	400	443	487
40A	105	136	198	266	335	402	468	534	599	664	729
50A	163	211	306	411	518	621	723	824	924	1025	1129

· AL-140H for steam (saturation temperature)

Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
15A	109	119	129	139	149	158	168	178	188	198	207
20A	189	206	222	239	256	273	290	306	324	340	357
25A	289	315	341	367	393	418	444	470	496	522	547
32A	487	531	574	617	661	704	747	791	835	878	921
40A	729	795	860	924	990	1054	1119	1184	1250	1315	1380
50A	1126	1227	1327	1427	1528	1627	1728	1828	1930	2030	2130

(kg/h)

 (m^3/h)

(m³/h)

· AL-140 for air (20°C) <Pressure vessel structure standard>

• AL-140 for a	air (20 C)	<press< th=""><th>ure vess</th><th>ei structu</th><th>ire stand</th><th>aro></th><th></th><th></th><th></th><th></th><th>(kg/h)</th></press<>	ure vess	ei structu	ire stand	aro>					(kg/h)
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	25	33	48	65	81	98	114	131	147	164	181
20A	44	57	83	111	140	169	197	226	254	283	311
25A	67	87	127	171	215	258	302	346	390	433	477
32A	113	147	214	288	362	435	509	582	656	730	803
40A	169	221	321	431	542	652	762	872	982	1093	1203
50A	262	341	496	666	836	1006	1176	1346	1516	1687	1857

· AL-140H for air (20°C)

AL-140H for air (20°C) (kg/h)											
Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
15A	181	197	214	230	247	264	280	297	313	330	347
20A	311	340	368	397	426	454	483	511	540	568	597
25A	477	521	565	608	652	696	740	783	827	871	915
32A	803	877	950	1024	1098	1171	1245	1318	1392	1466	1539
40A	1203	1313	1423	1533	1644	1754	1864	1974	2084	2195	2305
50A	1857	2027	2197	2367	2537	2707	2877	3047	3217	3388	3558

· AL-140 for water (accumulation: 25%) <Yoshitake standard>

											()
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	0.4	0.5	0.9	1.1	1.3	1.5	1.6	1.8	1.9	2.0	2.1
20A	0.6	0.9	1.6	2.0	2.3	2.6	2.8	3.1	3.3	3.5	3.7
25A	1.0	1.5	2.5	3.1	3.6	4.0	4.4	4.7	5.1	5.4	5.7
32A	1.8	2.6	4.5	5.5	6.3	7.1	7.8	8.4	9.0	9.5	10.0
40A	2.7	3.8	6.5	7.9	9.2	10.3	11.3	12.2	13.0	13.8	14.6
50A	4.1	5.9	10.0	12.3	14.2	15.9	17.4	18.8	20.1	21.3	22.4

· AL-140H for water (accumulation: 25%)

Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
15A	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	2.9	3.0
20A	3.7	3.9	4.0	4.2	4.4	4.5	4.7	4.8	5.0	5.1	5.2
25A	5.7	6.0	6.2	6.5	6.7	7.0	7.2	7.4	7.6	7.8	8.0
32A	10.0	10.5	11.0	11.4	11.9	12.3	12.7	13.1	13.5	13.8	14.2
40A	14.6	15.3	15.9	16.6	17.2	17.8	18.4	19.0	19.5	20.1	20.6
50A	22.4	23.5	24.6	25.6	26.6	27.5	28.4	29.3	30.1	30.9	31.8

· Please contact us for the calculation procedure for nominal size selection.

40T Full bore type Lift type Safety valve Relief valve Safety relief valve Closed type Dash-pot structure Lever type Handle type Stainless High pressure gas testing products

Non-leakage Diaphragm

Features

- 1. Safety relief valve of all stainless steel made, offering high corrosion resistance and durability in particular.
- 2. Excellent airtightness ensured by the valve seat incorporating soft seat. Most suitable for applications where valve seat leakage is not tolerated.
- 3. Closed structure prevents fluid leakage.

Specifications

	Structure	Closed type			
	Application	Air, Cold and hot water, Oil, Other non-dangerous fluids *			
Wo	orking pressure	0.05-1.0 MPa			
Maxi	num temperature	120°C			
	Spring case	Cast stainless steel			
Matorial	Valve, valve seat	Cast stainless steel (SCS14A)			
Ivialeriai	Adjusting spring	Stainless steel			
	O-ring	FKM			
	Connection	JIS Rc screwed			

* Please contact us when using for oil.

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Neminal size		Dir	nension (m		Flow area	Weight	
Nominal size	d	D	L	H ₁	Н	πDℓ (mm²)	(kg)
15A	Rc 1/2	16	34	40	128	20.1	0.7
20A	Rc 3/4	21	38	42	128.5	34.6	0.8
25A	Rc 1	26	43	51	148	53.0	1.1
32A	Rc 1-1/4	33	50	61.5	181.5	93.3	1.8
40A	Rc 1-1/2	41	60	64	205	135.2	2.8
50A	Rc 2	51	75	76	245.5	208.2	4.7

Soft seat is used for the trim parts! Soft seat (O-ring) is used for the trim parts, ensuring the reliable airtightness of the valve seat.

т _\ \ H ī φD d ſì

Soft seat (O-ring)

3

Safety Relief Valve

www.yoshitake.jp

Certified Capacity Table

• For air (20°C) <Pressure vessel structure standard>

										(0)
0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
25	33	48	65	81	98	114	131	147	164	181
44	57	83	111	140	169	197	226	254	283	311
68	87	127	171	215	258	302	346	390	433	477
114	147	214	288	362	435	509	582	656	730	803
171	221	321	431	542	652	762	872	982	1093	1203
264	341	496	666	836	1006	1176	1346	1516	1687	1857
	0.05 25 44 68 114 171 264	0.05 0.1 25 33 44 57 68 87 114 147 171 221 264 341	0.05 0.1 0.2 25 33 48 44 57 83 68 87 127 114 147 214 171 221 321 264 341 496	0.05 0.1 0.2 0.3 25 33 48 65 44 57 83 111 68 87 127 171 114 147 214 288 171 221 321 431 264 341 496 666	0.05 0.1 0.2 0.3 0.4 25 33 48 65 81 44 57 83 111 140 68 87 127 171 215 114 147 214 288 362 171 221 321 431 542 264 341 496 666 836	0.05 0.1 0.2 0.3 0.4 0.5 25 33 48 65 81 98 44 57 83 111 140 169 68 87 127 171 215 258 114 147 214 288 362 435 171 221 321 431 542 652 264 341 496 666 836 1006	0.05 0.1 0.2 0.3 0.4 0.5 0.6 25 33 48 65 81 98 114 44 57 83 111 140 169 197 68 87 127 171 215 258 302 114 147 214 288 362 435 509 171 221 321 431 542 652 762 264 341 496 666 836 1006 1176	0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 25 33 48 65 81 98 114 131 44 57 83 111 140 169 197 226 68 87 127 171 215 258 302 346 114 147 214 288 362 435 509 582 171 221 321 431 542 652 762 872 264 341 496 666 836 1006 1176 1346	0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 25 33 48 65 81 98 114 131 147 44 57 83 111 140 169 197 226 254 68 87 127 171 215 258 302 346 390 114 147 214 288 362 435 509 582 656 171 221 321 431 542 652 762 872 982 264 341 496 666 836 1006 1176 1346 1516	0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 25 33 48 65 81 98 114 131 147 164 44 57 83 111 140 169 197 226 254 283 68 87 127 171 215 258 302 346 390 433 114 147 214 288 362 435 509 582 656 730 171 221 321 431 542 652 762 872 982 1093 264 341 496 666 836 1006 1176 1346 1516 1687

(ka/h)

(m³/h)

· For water (accumulation: 25%) <Yoshitake standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	0.4	0.5	0.9	1.1	1.3	1.5	1.6	1.8	1.9	2.0	2.1
20A	0.6	0.9	1.6	2.0	2.3	2.6	2.8	3.1	3.3	3.5	3.7
25A	1.0	1.5	2.5	3.1	3.6	4.0	4.4	4.7	5.1	5.4	5.7
32A	1.8	2.6	4.5	5.5	6.3	7.1	7.8	8.4	9.0	9.5	10.0
40A	2.7	3.8	6.5	7.9	9.2	10.3	11.3	12.2	13.0	13.8	14.6
50A	4.1	5.9	10.0	12.3	14.2	15.9	17.4	18.8	20.1	21.3	22.4

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

Relief Valve

AL-250,250R

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	s testing products
Diaphragm	Non-leakage		

Features

- 1. Relief valve of stainless steel made, offering high corrosion resistance and durability in particular.
- 2. Remarkably effective for lines of heavy pulsation or considerable pressure fluctuation due to unique valve structure. Prevents chattering and hunting.
- 3. Stable operation can be maintained against back pressure changes produced in continuous blow.
- 4. Simple structure, easy to handle.
- 5. Since the AL-250R is equipped with a handle, pressure change is easy.

AL-250

Specifications

Model		AL-250	AL-250R		
Structure		Closed type	Closed type with a handle		
	Application	Cold and hot water, Oil, O	ther non-dangerous fluids		
Working pressure		0.05-1.0 MPa			
Maxir	num temperature	120°C			
Motorial	Spring case	Cast stainless steel			
Valve, valve seat		Stainless steel			
Connection		JIS Rc screwed			

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Dimensions	s and weig	jnts	(mm)			
Nominal size	d	L	H ₁	Н	Weight (kg)	
15A	Rc 1/2	34	41.0	129 (185)	0.7 (0.9)	
20A	Rc 3/4	38	45.0	132 (188)	0.9 (1.1)	
25A	Rc 1	43	51.5	148 (203)	1.2 (1.4)	
32A	Rc 1-1/4	50	63.5	184 (241)	2.2 (2.5)	
40A	Rc 1-1/2	60	68.5	210 (278)	3.2 (3.7)	
50A	Rc 2	75	80.0	250 (314)	5.6 (6.0)	

· The values in parentheses are the dimensions and weights of the AL-250R.

· Dashpot structure

① AL-250

Relief Valve

AL-260,260R

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	s testing products
Diaphragm	Non-leakage		

Features

- 1. Stainless steel is used for the trim parts, and corrosionresistant material for all wetted parts.
- 2. Remarkably effective for lines of heavy pulsation or considerable pressure fluctuation due to unique valve structure. Prevents chattering and hunting.
- 3. Stable operation can be maintained against back pressure changes produced in continuous blow.
- 4. Simple structure, easy to handle.
- 5. Since the AL-260R is equipped with a handle, pressure change is easy.

AL-260

Specifications

Model		AL-260	AL-260R	
Structure		Closed type	Closed type with a handle	
	Application	Cold and hot water, Oil, O	ther non-dangerous fluids	
Working pressure		0.05-1.0 MPa		
Maximum temperature		120°C		
	Valve case	Cast bronze		
Material	Spring case	Cast bronze		
	Valve, valve seat	Stainless steel		
Connection		JIS Rc screwed		

· Please refer to the chart in P.3 -76 for set pressure range.

Dimensions and Weights

Dimensions	s and weig	gnis	(mm)			
Nominal size	d	L	H ₁	Н	Weight (kg)	
15A	Rc 1/2	34	41.0	129 (185)	0.7 (1.0)	
20A	Rc 3/4	38	45.0	131 (187)	0.9 (1.2)	
25A	Rc 1	43	51.5	145 (200)	1.2 (1.5)	
32A	Rc 1-1/4	50	63.5	184 (241)	1.9 (2.2)	
40A	Rc 1-1/2	60	68.5	210 (278)	2.8 (3.2)	
50A	Rc 2	75	80.0	250 (314)	4.9 (5.3)	

· The values in parentheses are the dimensions and weights of the AL-260R.

Flow rate chart [water] (AL-250 · 250R · 260 · 260R)

Shown in the chart is the flow rate at 25% accumulation. For flow rates at other accumulation levels, use the approximate flow rate magnification chart.

Dashpot structure

Approximate flow rate magnification chart

When the accumulation is not 25%, select an approximate flow rate magnification matching the accumulation based on this chart, and multiply the flow rate at 25% accumulation by the selected magnification.

 \cdot Discharge capacity (accumulation: 25%)

Nominal aiza	Opening pressure (MPa)										
Nominal Size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	0.14	0.20	0.29	0.35	0.41	0.46	0.50	0.54	0.58	0.62	0.65
20A	0.20	0.29	0.41	0.51	0.59	0.66	0.72	0.78	0.83	0.88	0.93
25A	0.49	0.69	0.98	1.20	1.38	1.54	1.69	1.83	1.96	2.07	2.19
32A	1.14	1.62	2.29	2.81	3.24	3.63	3.97	4.29	4.59	4.87	5.13
40A	1.79	2.53	3.58	4.39	5.07	5.67	6.21	6.71	7.17	7.61	8.02
50A	2.80	3.96	5.60	6.86	7.92	8.86	9.71	10.49	11.21	11.89	12.53

(m³/h)

Relief Valve

AL	-2	.7	
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage)	

Features

- 1. Relief valve, designed for pressure up to 1.6 MPa.
- 2. Remarkably effective for lines of heavy pulsation or considerable pressure fluctuation due to unique valve structure. Prevents chattering and hunting.
- 3. Stable operation can be maintained against back pressure changes produced in continuous blow.

Specifications

Structure		Closed type
Application		Cold and hot water, Oil, Other non-dangerous fluids
Worl	king pressure	0.05-1.6 MPa
Maximum temperature		120°C
	Valve case	Ductile cast iron
Material	Spring case	Ductile cast iron
Valve, valve seat		Stainless steel
Connection		JIS Rc screwed

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Dimensions and	weights		(mm)				
Nominal size	d	L	H ₁	Н	Weight (kg)		
15A	Rc 1/2	40	40	143	0.9		
20A	Rc 3/4	45	50	162	1.3		
25A	Rc 1	50	60	182	1.7		
32A	Rc 1-1/4	60	70	220	2.9		
40A	Rc 1-1/2	65	75	238	3.9		
50A	Rc 2	80	85	272	6.4		

Flow Rate Chart [water]

Shown in the chart is the flow rate at 25% accumulation.

For flow rates at other accumulation levels, use the approximate flow rate magnification chart.

Approximate flow rate magnification chart

When the accumulation is not 25%, select an approximate flow rate magnification matching the accumulation based on this chart, and multiply the flow rate at 25% accumulation by the selected magnification.

AL	-1		
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Features

- Safety relief valve with the trim parts (valve and valve seat) of stainless steel, offering high corrosion resistance and durability in particular.
- 2. Popping structure ensures reliable discharge.
- 3. Blowdown can be adjusted with adjustable ring (seat ring).

Specifications

	Structure	Closed type		
	Application	Steam, Air, Cold and hot water,		
	Application	Oil, Other non-dangerous fluids		
W	orking pressure	0.05-1.6 MPa		
Maxi	mum temperature	220°C *		
Matarial	Spring case	Ductile cast iron		
Valve, valve seat		Stainless steel		
	Connection	JIS Rc screwed		

* The maximum temperature is 150°C when using for water, oil, or other liquids.

• Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nominal		Dim	ension (r	nm)		Flow area	Weight
size	d	D L H ₁ H		Н	πDℓ (mm²)	(kg)	
15A	Rc 1/2	16	40	40	143	20.1	0.9
20A	Rc 3/4	21	45	50	162	34.6	1.2
25A	Rc 1	26	50	60	182	53.0	1.7
32A	Rc 1-1/4	33	60	70	220	85.5	2.9
40A	Rc 1-1/2	41	65	75	238	132.0	3.8
50A	Rc 2	51	80	85	272	204.2	6.3

Certified Capacity Table

· For steam (saturation temperature) < Pressure vessel structure standard>

• For steam (sat	For steam (saturation temperature,																(kg/h)
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	15	20	29	40	50	60	70	80	90	100	109	119	129	139	149	158	168
20A	27	35	51	69	87	104	121	138	155	172	189	206	222	239	256	273	290
25A	42	54	78	105	133	159	186	212	237	263	289	315	341	367	393	418	444
32A	67	87	127	170	215	257	300	342	383	425	467	509	550	592	634	675	716
40A	104	135	196	263	332	397	463	528	592	656	721	786	850	914	979	1042	1106
50A	161	209	303	407	513	615	716	817	916	1016	1116	1216	1315	1414	1514	1612	1712

· For air (20°C) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	25	33	48	65	81	98	114	131	147	164	181	197	214	230	247	264	280
20A	44	57	83	111	140	169	197	226	254	283	311	340	368	397	426	454	483
25A	68	87	127	171	215	258	302	346	390	433	477	521	565	608	652	696	740
32A	108	141	205	276	347	417	488	558	629	699	770	841	911	982	1052	1123	1193
40A	168	218	317	426	535	644	753	862	971	1080	1189	1298	1407	1516	1625	1734	1843
50A	259	338	491	660	828	997	1166	1334	1503	1671	1840	2008	2177	2345	2514	2682	2851

· For water (accumulation: 25%) <Yoshitake standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	0.2	0.3	0.5	0.6	0.7	0.8	0.8	0.9	1.0	1.0	1.1	1.1	1.2	1.2	1.3	1.3	1.4
20A	0.4	0.6	0.8	1.0	1.2	1.3	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.3	2.4
25A	0.6	0.9	1.3	1.6	1.8	2.1	2.3	2.5	2.6	2.8	2.9	3.1	3.2	3.4	3.5	3.6	3.7
32A	1.0	1.5	2.1	2.6	3.0	3.4	3.7	4.0	4.3	4.5	4.8	5.0	5.2	5.5	5.7	5.9	6.1
40A	1.6	2.3	3.3	4.0	4.7	5.2	5.7	6.2	6.6	7.0	7.4	7.8	8.1	8.4	8.8	9.1	9.4
50A	2.5	3.6	5.1	6.3	7.2	8.1	8.9	9.6	10.3	10.9	11.5	12.0	12.6	13.1	13.6	14.1	14.5

* Please refer to P.3-11 for the calculation procedure for nominal size selection.

(kg/h)

(m³/h)

Lift Safety Valve

AL	-1	0	
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Features

- 1. Compact and lightweight lift safety valve, installation is easy.
- 2. Simple structure and easy maintenance.
- Due to lift valve lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure (open type with a lever).
- 4. Blowdown can be adjusted with adjustable ring (seat ring).

Open type with a lever

Open type without a lever

Specifications

	Structure	Open type
	Application	Steam
W	orking pressure	0.05-1.0 MPa
Maxi	mum temperature	220°C
Motorial	Spring case	Ductile cast iron
waterial	Valve, valve seat	Cast bronze or stainless steel
	Connection	JIS Rc screwed

• Please refer to the chart in P.3 -76 for set pressure range.

Dimensions and Weights

Nominal sizo			Dimens	ion (mm)			Flow area	Weight (kg)	
Nominal Size	d	L	H ₁	H∟	Hx	D	πDℓ (mm²)		
15A	Rc 1/2	40	40	154	142	16	20.1	1.0	
20A	Rc 3/4	45	50	173	161	21	34.6	1.5	
25A	Rc 1	50	60	193	181	26	53.0	1.8	
32A	Rc 1-1/4	60	70	232	219	33	85.5	3.1	
40A	Rc 1-1/2	65	75	250	237	41	132.0	4.5	
50A	Rc 2	80	85	284	271	51	204.2	6.2	

Ť

۰.

d

÷

(kg/h)

Open type with a lever

٦ì Open type without a lever

Certified Capacity Table

· For steam (saturation temperature) < Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	15	20	29	40	50	60	70	80	90	100	109
20A	27	35	51	69	87	104	121	138	155	172	189
25A	42	54	78	105	133	159	186	212	237	263	289
32A	67	87	127	170	215	257	300	342	383	425	467
40A	104	135	196	263	332	397	463	528	592	656	721
50A	161	209	303	407	513	615	716	817	916	1016	1116

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

At the Time of Ordering

When ordering, please specify with or without lever and the material of the valve body and valve seat in addition to the set pressure.

Relief Valve

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	s testing products
Diaphragm	Non-leakage		

Features

- 1. No need to worry about rust by made of bronze for valve case and stainless steel for
- valve seat. Operation is reliable since the valve is diaphragm type with no sliding part. 2. Wide set pressure range is available by only one spring. Changing set pressure is easy,
- because the adjusting screw is handle type and lock nut is butterfly nut.
- 3. Opening and closing are smooth even when the valve operates continuously, and surely relief the fluid at set pressure. Also it can operate stably from small to large flow rate.
- 4. Diaphragm and valve materials can be chosen from NBR or FKM (fluororubber) depends on the specification.
- 5. Can be connected in any direction (horizontal or vertical).

Specifications

Model		AL-24	AL-24F			
Application		Cold and hot water	Cold and hot water, Oil, Other non-dangerous fluids			
Working pressure		0.1-0.7 MPa *1				
Maximum temperature		60°C	120°C			
	Valve case	Bronze *2				
Material	Valve	NBR	FKM			
	Valve seat	Stainless steel				
	Diaphragm	NBR (heat-resistant nylon contained)	FKM (heat-resistant nylon contained)			
Connection		JIS Rc screwed				

*1 Available with working pressure between 0.05MPa and 0.1MPa.

*2 Available with NPb-treated.

Dimensions and Weights

Dimensio	ons and	(mm)					
Nominal size	d	L	L1	Н	H1	D	Weight (kg)
15A	Rc 1/2	180.5	20.5	91	46	15	1.4
20A	Rc 3/4	181.5	18.5	92	47	15	1.4
25A	Rc 1	187.5	17.5	97	52	18.2	1.6

Certified Capacity Table

· Set pressure range 0.1 to 0.7 MPa (accumulation 25%)

\sim Set pressure range 0.1 to 0.7 MPa (accumulation 25%) (m ³ /l									(m³/h)				
Nominal size		Set pressure (MPa)											
	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70
15A	0.31	0.38	0.44	0.49	0.54	0.58	0.63	0.66	0.70	0.73	0.77	0.80	0.83
20A	0.31	0.38	0.44	0.49	0.54	0.58	0.63	0.66	0.70	0.73	0.77	0.80	0.83
25A	0.46	0.56	0.65	0.73	0.80	0.86	0.92	0.98	1.03	1.08	1.13	1.18	1.22

· Set pressure range 0.05 to 0.1 MPa (accumulation 25%)

						(m³/h)			
Nominal size	Set pressure (MPa)								
	0.05	0.06	0.07	0.08	0.09	0.10			
15A	1.27	1.39	1.50	1.61	1.70	1.80			
20A	1.27	1.39	1.50	1.61	1.70	1.80			
25A	1.87	2.05	2.21	2.37	2.51	2.65			

· Calculation formula

V = ----

AK 12.4/ <u>G</u> P	V: Discharge capacity (m³/h) D: Seat diameter (mm)						
	ℓ : Lift (mm)						
	0.1-0.7 MPa ℓ = D/40						
	0.05-0.1 MPa ℓ = D/7						
	A: Effective area (m ²)						
	$A = \pi D \ell$						
	K: 0.7(Flow rate coefficient)						
	G: Specific gravity						
	P: Opening pressure (MPa)						
	Viscosity is calculated from formula for viscosity correction.						
Safety Relief Valve

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	testing products
Diaphragm	Non-leakage		

Features

- 1. Safety valve, simple structure and easy maintenance.
- 2. Easy adjustment.

Specifications

	Model	AL-300	AL-301
	Structure	Close	d type
	Application	Ste	am
Wo	rking pressure	0.05-1.0 MPa	0.05-1.6 MPa
Maxin	num temperature	220	D°C
	Valve case	Ductile	cast iron
Material	Spring case	Ductile	cast iron
Valve, valve seat		Cast bronze	Stainless steel
	Connection	IIS 10K EE flanged	JIS 10K FF flanged
	Connoction	JIS TUR PF lianged	JIS 16K FF flanged *

* JIS 16K FF flanged when working pressure is more than 1.0 MPa.

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nominal sizo		Dimensi	Flow area	Weight		
Norminal Size	L	H ₁	Н	D	πDℓ (mm²)	(kg)
15A	90	108	245	25	49.1	4.7
20A	90	108	245	25	49.1	5.0
25A	90	108	245	25	49.1	6.2
32A	91	115	285	37	107.6	8.6
40A	91	115	285	38	113.5	8.8
50A	105	132	311	50	196.4	12.6

Safety Relief Valve

AL-300T,301T

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	s testing products
Diaphragm	Non-leakage		

Features

- 1. Safety relief valve, simple structure and easy maintenance.
- 2. Easy adjustment.
- 3. Fluororesin disc ensures reliable seating.

Safety Relief Valve 😡

Specifications

	Model	AL-300T	AL-301T
	Structure	Close	d type
	Application	Air, Cold and hot water, Oil,	Other non-dangerous fluids
W	lorking pressure	0.05-1.0 MPa	0.05-1.3 MPa *1
Max	imum temperature	150	D°C
Motorial	Valve case, spring case	Ductile	cast iron
Valve, valve seat		Cast bronze · PTFE	Stainless steel • PTFE
	Ormanting		JIS 10K FF flanged
	Connection	JIS TUK FF flanged	JIS 16K FF flanged *2

*1 Please contact us if working pressure is between 1.31 MPa and 1.6 MPa.

*2 JIS 16K FF flanged when working pressure is more than 1.0 MPa.

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nieuwin et eine		Dimensio	Flow area	Moight (kg)			
Nominal size	L	H ₁	Н	D	$\pi D\ell$ (mm ²)	weight (kg)	
15A	90	108	245	29	66.1	4.7	
20A	90	108	245	29	66.1	5.0	
25A	90	108	245	29	66.1	6.2	
32A	91	115	285	37	107.6	8.6	
40A	91	115	285	37	107.6	8.8	
50A	105	132	311	50	196.4	12.6	

■Certified Capacity Table for AL-300 · 301

· For steam (saturation temperature) < Pressure vessel structure standard>

· For steam	For Stearn (Saturation temperature) < Fressure vessel Structure Standard>												(kg/h)				
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	38	50	73	98	123	148	172	196	220	244	268	292	316	340	364	387	411
20A	38	50	73	98	123	148	172	196	220	244	268	292	316	340	364	387	411
25A	38	50	73	98	123	148	172	196	220	244	268	292	316	340	364	387	411
32A	85	110	160	214	270	324	377	430	482	535	588	640	693	745	798	849	902
40A	89	116	168	226	285	342	398	454	509	564	620	675	731	786	841	896	951
50A	155	201	292	392	494	592	689	785	881	977	1073	1169	1265	1360	1456	1551	1646

■Certified Capacity Table for AL-300T · 301T

· For air (20°C) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	84	109	159	213	268	322	377	432	486	541	595	650	704	759	604	645	685
20A	84	109	159	213	268	322	377	432	486	541	595	650	704	759	604	645	685
25A	84	109	159	213	268	322	377	432	486	541	595	650	704	759	604	645	685
32A	136	178	259	347	436	525	614	703	792	880	969	1058	1147	1236	1324	1413	1502
40A	136	178	259	347	436	525	614	703	792	880	969	1058	1147	1236	1397	1491	1584
50A	249	325	473	635	797	959	1121	1283	1445	1607	1769	1932	2094	2256	2418	2580	2742

(kg/h)

(m³/h)

· For water (accumulation: 25%) <Yoshitake standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
15A	0.8	1.1	1.6	2.0	2.3	2.6	2.8	3.1	3.3	3.5	3.7	3.9	4.0	4.2	3.2	3.3	3.5
20A	0.8	1.1	1.6	2.0	2.3	2.6	2.8	3.1	3.3	3.5	3.7	3.9	4.0	4.2	3.2	3.3	3.5
25A	0.8	1.1	1.6	2.0	2.3	2.6	2.8	3.1	3.3	3.5	3.7	3.9	4.0	4.2	3.2	3.3	3.5
32A	1.3	1.9	2.7	3.3	3.8	4.2	4.7	5.0	5.4	5.7	6.0	6.3	6.6	6.9	7.1	7.4	7.6
40A	1.3	1.9	2.7	3.3	3.8	4.2	4.7	5.0	5.4	5.7	6.0	6.3	6.6	6.9	7.5	7.8	8.1
50A	2.4	3.5	4.9	6.0	7.0	7.8	8.5	9.2	9.9	10.5	11.0	11.6	12.1	12.6	13.1	13.5	14.0

· Please refer to P.3-11 for the calculation procedure for nominal size selection.

Relief Valve

-280 Full bore type Safety valve Relief valve Lift type Closed type Dash-pot structure Safety relief valve Lever type ting products

Handle type	Stainless	High	pressure	gas	test
Diaphragm	Non-leakage)			

Features

- 1. Relief valve, exclusive for the pressure control of pumps with high pulsation pressure or large pressure fluctuation.
- 2. The trim parts (valve and valve seat) are designed to continuously discharge fluid against its set pressure change without popping (patent pending), preventing chattering and hunting.
- 3. Stainless steel with excellent corrosion resistance is used for the adjusting spring.

Specifications

	Structure	Closed type				
	Application	Cold and hot water, Oil (heavy oil A, heavy oil B, kerosene)				
Wo	orking pressure	0.05-1.0 MPa				
Maxir	num temperature	120°C				
Valve case		Ductile cast iron				
Motorial	Spring case	Ductile cast iron				
Valve, valve seat		Stainless steel				
	Adjusting spring	Stainless steel				
Connection		JIS 10K FF flanged				

• Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Dimensions	s and weight	.5	(mm)				
Nominal size	L	Н	H ₁	Weight (kg)			
15A	90	245	108	4.7			
20A	90	245	108	5.0			
25A	90	245	108	6.2			
32A	91	285	115	8.6			
40A	91	285	115	8.8			
50A	105	331	132	13.0			

· Dashpot structure

3

Safety Relief Valve

Flow rate chart

The flow rate to each nominal size when the accumulation (overpressure to the set pressure) is 25% is as shown in Fig. 1. See Fig. 2 when the accumulation is less than 25%.

Fig. 1: Nominal size selection chart

Fig. 2: Approximate flow rate magnification

When the accumulation is less than 25%, select an approximate flow rate magnification matching the accumulation based on this chart, and multiply the flow rate at 25% accumulation by the selected magnification.

[Example]

To select a nominal size when the working conditions are pressure: 0.3 MPa and discharge capacity: 1.0 m³/h, first find intersection point A of the pressure of 0.3 MPa on the horizontal axis and the discharge capacity of 1.0 m³/h on the vertical axis in Fig. 1.

Since intersection point A lies between the curve of nominal sizes 15A · 25A and the curve of nominal size 25A, select the larger one, 25A.

[Example]

To obtain the flow rate when the working conditions are nominal size: 25A, setting pressure: 0.1 MPa, and accumulation: 20%, first find the flow rate at an accumulation of 25% in Fig. 1. Then, mark intersection point B of the accumulation of 20% and the diagonal straight line in Fig. 2. Trace horizontally to the left from this intersection point B, and reach the point of 0.8 on the axis of approximate flow rate magnification.

· Discharge of	Discharge capacity (reference) (accumulation: 25%)											
Nominal sizo	Flow area		Opening pressure (MPa)									
Norminal Size	(mm²)	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A•20A	16.7	0.20	0.29	0.41	0.51	0.59	0.66	0.72	0.78	0.83	0.88	0.93
25A	36.2	0.49	0.69	0.98	1.20	1.38	1.54	1.69	1.83	1.96	2.07	2.19
32A	91.9	1.14	1.62	2.29	2.81	3.24	3.63	3.97	4.29	4.59	4.87	5.13
40A	143.6	1.79	2.53	3.58	4.39	5.07	5.67	6.21	6.71	7.17	7.61	8.02
50A	224.3	2.80	3.96	5.60	6.86	7.92	8.86	9.71	10.49	11.21	11.89	12.53

· Discharge capacity (reference) (accumulation: 25%)

Safety Relief Valve

AL	-3	31,31
Full bore type	Lift type	Safety valve Relief valve
Safety relief valve	Lever type	Closed type Dash-pot structure
Handle type	Stainless	High pressure gas testing products

Diaphragm (Non-leakage)

Features

- 1. Safety relief valve of all stainless steel made, offering high corrosion resistance and durability in particular.
- 2. Popping structure ensures reliable discharge.

AL-31

Specifications

	Model	AL-31	AL-31H			
	Structure	Close	d type			
	Application	Steam, Air, Cold and hot water, Oil, Other non-dangerous				
W	orking pressure	0.05-1.0 MPa	1.0-2.0 MPa			
Max	mum temperature	220°C *				
	Valve case	Cast stainless steel				
Material	Spring case	Cast stainless steel				
Valve, valve seat		Stainless steel				
	Connection	JIS 10K RF flanged	JIS 16K RF flanged JIS 20K RF flanged			

* The maximum temperature is 150°C when using for water, oil, or other liquids.

• Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Nominal aiza	Dimen	sion (mm)			Flow area	Woight (kg)
Nominal Size	di x D x do	L	H1	Н	<i>π</i> Dℓ (mm²)	weigin (kg)
15A	15 x 16 x 20	73	72	160	20.1	3.4
20A	20 x 21 x 25	77	74	163	34.6	4.5
25A	25 x 26 x 32	91	87	187	53.0	6.5
32A	32 x 33 x 40	96	92	238	85.5	8.1 (8.3)
40A	40 x 41 x 50	114	100	277	132.0	11.4 (11.7)
50A	50 x 51 x 65	116	107	315 (357)	204.2	15.0 (18.0)

 \cdot The above values in parentheses are the dimensions and weights of JIS 20K RF flanged.

• The nominal size and size of screwed end connection are different. The size of screwed end connection have to be one size bigger.

Certified Capacity Table for AL-31, 31H

· AL-31 for steam (saturation temperature) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	15	20	29	40	50	60	70	80	90	100	109
20A	27	35	51	69	87	104	121	138	155	172	189
25A	42	54	78	105	133	159	186	212	237	263	289
32A	67	87	127	170	215	257	300	342	383	425	467
40A	104	135	196	263	332	397	463	528	592	656	721
50A	161	209	303	407	513	615	716	817	916	1016	1116

· AL-31H for steam (saturation temperature)

Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
15A	109	119	129	139	149	158	168	178	188	198	207
20A	189	206	222	239	256	273	290	306	324	340	357
25A	289	315	341	367	393	418	444	470	496	522	547
32A	467	509	550	592	634	675	716	758	800	842	883
40A	721	786	850	914	979	1042	1106	1171	1236	1300	1364
50A	1116	1216	1315	1414	1514	1612	1712	1811	1912	2011	2110

· AL-31 for air (20°C) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	25	33	48	65	81	98	114	131	147	164	181
20A	44	57	83	111	140	169	197	226	254	283	311
25A	67	87	127	171	215	258	302	346	390	433	477
32A	108	141	205	276	347	417	488	558	629	699	770
40A	168	218	317	426	535	644	753	862	971	1080	1189
50A	259	338	491	660	828	997	1166	1334	1503	1671	1840

· AL-31H for air (20°C)

Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
15A	181	197	214	230	247	264	280	297	313	330	347
20A	311	340	368	397	426	454	483	511	540	568	597
25A	477	521	565	608	652	696	740	783	827	871	915
32A	770	841	911	982	1052	1123	1193	1264	1335	1405	1476
40A	1189	1298	1407	1516	1625	1734	1843	1952	2061	2170	2279
50A	1840	2008	2177	2345	2514	2682	2851	3020	3188	3357	3525

· AL-31 for water (accumulation: 25%) <Yoshitake standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
15A	0.2	0.3	0.5	0.6	0.7	0.8	0.8	0.9	1.0	1.0	1.1
20A	0.4	0.6	0.8	1.0	1.2	1.3	1.5	1.6	1.7	1.8	1.9
25A	0.6	0.9	1.3	1.6	1.8	2.1	2.3	2.5	2.6	2.8	2.9
32A	1.0	1.5	2.1	2.6	3.0	3.4	3.7	4.0	4.3	4.5	4.8
40A	1.6	2.3	3.3	4.0	4.7	5.2	5.7	6.2	6.6	7.0	7.4
50A	2.5	3.6	51	6.3	72	81	8.9	9.6	10.3	10.9	11.5

· AL-31H for water (accumulation: 25%)

Pressure MPa Nominal size	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
15A	1.1	1.1	1.2	1.2	1.3	1.3	1.4	1.4	1.5	1.5	1.6
20A	1.9	2.0	2.1	2.2	2.3	2.3	2.4	2.5	2.6	2.6	2.7
25A	2.9	3.1	3.2	3.4	3.5	3.6	3.7	3.9	4.0	4.1	4.2
32A	4.8	5.0	5.2	5.5	5.7	5.9	6.1	6.2	6.4	6.6	6.8
40A	7.4	7.8	8.1	8.4	8.8	9.1	9.4	9.7	9.9	10.0	10.5
50A	11.5	12.0	12.6	13.1	13.6	14.1	14.5	15.0	15.4	15.8	16.3

· AL-31: 0.05-1.0 MPa AL-31H: 1.0-2.0 MPa

· Please refer to P.3-11 for the calculation procedure for nominal size selection.

(kg/h)

(kg/h)

(kg/h)

 (m^3/h)

(m³/h)

Safety Relief Valve

AL	-4	,4T
Full bore type	Lift type	Safety valve Relief valve
Safety relief valve	Lever type	Closed type Dash-pot structu
Handle type	Stainless	High pressure gas testing produc
Diaphragm	Non-leakage	

Features

- 1. Safety valve, simple structure and easy maintenance.
- 2. Easy adjustment.
- 3. Fluororesin disc ensures reliable seating. (AL-4T)

Specifications

• **AL-4**

	Structure	Open type
	Application	Steam
V	Vorking pressure	0.05-1.5 MPa *1
Max	kimum temperature	220°C
	Valve case	Ductile cast iron
Material	Spring case	Ductile cast iron
	Valve, valve seat	Stainless steel
Connection		JIS 10K FF flanged
		JIS 16K FF flanged *2

*1 Maximum working pressure for 150A type is 0.8 MPa (connection: JIS 10K FF flanged).

*2 JIS 16K FF flanged when working pressure is more than 1.0 MPa.

· Please refer to the chart in P.3-76 for set pressure range.

· AL-4T

3 - 45

	Туре	Standard	With SUS trim parts		
Structure		Clos	ed type		
	Application	Air, Cold and hot water, Oi	I, Other non-dangerous fluids		
Working pressure		0.05-1.0 MPa *1	0.05-1.5 MPa ^{*1} *2		
Maxir	num temperature	1	50°C		
	Valve case	Ductile cast iron			
Matorial	Spring case	Ductile	e cast iron		
Material	Value velue cost	Cast bronze	Stainless steel		
	valve, valve seat	(PTFE disc incorporated)	(PTFE disc incorporated)		
	Connection	IIS 10K EE flanged	JIS 10K FF flanged		
	Connection	JIS TOK FF hanged	JIS 16K FF flanged *3		

*1 Maximum working pressure for 150A is 0.8 MPa (connection: JIS 10K FF flanged).

*2 When working pressure is more than 1.2 MPa (for 65A and 80A) or 1.0 MPa (for 100A and 125A), a metal-to-metal seating is incorporated in.

*3 JIS 16K FF flanged is used when working pressure is more than 1.0 MPa.

Safety Relief Valve 😡

Dimensions and Weights

· AL-4 (JIS 10K)

Nominal aiza		Dimens	ion (mm)	Flow area	Moight (kg)	
NOTITIAL SIZE	L	H ₁ H D		$\pi D\ell (mm^2)$	vveigitt (kg)	
65A	120	120	432	65	331.9	20
80A	130	130	447	75	441.8	22
100A	160	150	595	100	785.4	44
125A	200	205	779	125	1227.2	88
150A	210	215	835	150	1767.2	113

· AL-4T (JIS 10K)

Nominal aiza		Dimens	ion (mm)	Flow area	Woight (kg)		
Nominal Size	L	H ₁	Н	D	$\pi D\ell$ (mm ²)	weight (kg)	
65A	120	120	434	65	331.9	20	
80A	130	130	449	75	441.8	22	
100A	160	150	597	100	785.4	44	
125A	200	205	781	125	1227.2	88	
150A	210	215	837	150	1767.2	113	

· AL-4 · AL-4T (JIS 16K)

Neminal size		Flow area			
Nominal size	L	H1	H ₁ Η D π		<i>π</i> Dℓ (mm²)
65A	120	120	432 (434)	65	331.9
80A	132	130	449 (451)	75	441.8
100A	162	150	597 (599)	100	785.4
125A	202	205	781 (783)	125	1227.2

 \cdot The above values in parentheses are the dimensions of the AL-4T.

At the Time of Ordering

When ordering, please specify with or without lever and the material of the valve body and valve seat in addition to the set pressure.

Safety Relief Valve

AL	-4	יס,י	42
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structur

Salety relief valve	Level type	Closed type	Dasil-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Features

- 1. Safety relief valve, simple structure and easy maintenance.
- 2. Easy adjustment.
- 3. Fluororesin disc ensures reliable seating. (AL-4ST)

■Specifications

· AL-4S

	Structure	Closed type	
	Application	Steam	
Working pressure		0.05-2.0 MPa	
Max	kimum temperature	220°C	
	Valve case	Ductile cast iron	
Material	Spring case	Ductile cast iron *	
	Valve, valve seat	Stainless steel	
		JIS 10K FF flanged	
Connection		JIS 16K FF flanged	
		JIS 20K FF flanged	

* Available with stainless steel made.

· Please refer to the chart in P.3-76 for set pressure range.

· AL-4ST

	Structure	Closed type
	Application	Air, Water, Oil, Other non-dangerous fluids
Working pressure		0.05-2.0 MPa *1
Maximum temperature		150°C
	Valve case	150°C Ductile cast iron *2
Material	Spring case	Ductile cast Iron 2
	Valve, valve seat	Stainless steel (PTFE disc incorporated)
		JIS 10K FF flanged
Connection		JIS 16K FF flanged
		JIS 20K FF flanged

*1 When working pressure is more than 1.2 MPa (for 65A and 80A) or 1.0 MPa (for 100A and 125A), a metal-to-metal seating is incorporated in.

*2 Available with stainless steel made.

Dimensions and Weights

· AL-4S

Nominal aiza		Flow area			
Norminal Size	L	H ₁	Н	D	πDℓ (mm²)
65A	135	125	442	65	331.9
80A	135	135	457	75	441.8
100A	160	150	597	100	785.4

The shape of AL-4ST is slightly different.

· AL-4ST

Nominal aiza		Flow area			
Nominal Size	L	H ₁	Н	n) Flow area D πDl (mm²) 65 331.9 75 441.8 100 785.4	
65A	135	125	444	65	331.9
80A	135	135	459	75	441.8
100A	160	150	599	100	785.4

Certified Capacity Table for AL-4

· For steam (saturation temperature)	<pressure standard="" structure="" vessel=""></pressure>
i of oteam (outeration temperature)	

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
65A	263	340	493	663	834	1000	1165	1328	1489	1651	1814
80A	350	452	657	882	1111	1331	1550	1767	1983	2198	2415
100A	622	804	1168	1569	1975	2367	2756	3142	3525	3908	4294
125A	972	1257	1826	2451	3086	3699	4307	4910	5508	6107	6709
150A	1400	1810	2629	3530	4445	5327	6203	7071	7932	-	-

(ka/b)

					(Kg/1)
Pressure MPa Nominal size	1.1	1.2	1.3	1.4	1.5
65A	1976	2138	2299	2461	2621
80A	2631	2846	3060	3276	3489
100A	4677	5059	5440	5825	6203
125A	7309	7906	8500	9102	9692
150A	-	-	-	-	-

Certified Capacity Table for AL-4T

• For air (20°C) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
65A	422	550	799	1073	1347	1621	1895	2169	2443	2717	2991
80A	562	732	1064	1428	1793	2158	2522	2887	3252	3616	3981
100A	999	1302	1891	2540	3188	3836	4484	5133	5781	6429	7077
125A	1562	2035	2955	3968	4981	5994	7007	8020	9033	10046	11059
150A	2249	2930	4256	5715	7173	8632	10091	11549	13008	-	-

(ka/h)

					(0)
Pressure MPa Nominal size	1.1	1.2	1.3	1.4	1.5
65A	3264	3538	3812	4086	4360
80A	4346	4710	5075	5440	5804
100A	7726	8374	9022	9671	10319
125A	12072	13085	14098	15111	16124
150A	-	-	-	-	-

· For water (accumulation: 25%) <Yoshitake standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
65A	4.1	5.9	8.3	10.2	11.8	13.2	14.5	15.6	16.7	17.7	18.7
80A	5.5	7.8	11.1	13.6	15.7	17.6	19.3	20.8	22.3	23.6	24.9
100A	9.9	14.0	19.8	24.2	28.0	31.3	34.3	37.0	39.6	42.0	44.3
125A	15.4	21.9	30.9	37.9	43.8	48.9	53.6	57.9	61.9	65.7	69.2
150A	22.3	31.5	44.6	54.6	63.0	70.5	77.2	83.4	89.2	-	-

					(m³/h)
Pressure MPa Nominal size	1.1	1.2	1.3	1.4	1.5
65A	19.6	20.5	21.3	22.1	22.9
80A	26.1	27.3	28.4	29.5	30.5
100A	46.4	48.5	50.5	52.4	54.2
125A	72.6	75.8	78.9	81.9	84.8
150A	-	-	-	-	-

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

(kg/h)

(kg/h)

3 -48

 (m^3/h)

5	5	
	Valve	
	Relief	
	afety F	

■Certified Capacity Table for AL-4S

· For steam (saturation temperature) < Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
65A	263	340	493	663	834	1000	1165	1328	1489	1651	1814
80A	350	452	657	882	1111	1331	1550	1767	1983	2198	2415
100A	622	804	1168	1569	1975	2367	2756	3142	3525	3908	4294
										(kg/h)	
Pressure MPa Nominal size	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	
65A	1976	2138	2299	2461	2621	2783	2944	3108	3269	3430	
80A	2631	2846	3060	3276	3489	3704	3919	4138	4352	4566	
100A	4677	5059	5440	5825	6203	6586	6968	7357	7737	8118	

(kg/h)

(kg/h)

■Certified Capacity Table for AL-4ST

· For air (20°C) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
65A	422	550	799	1073	1347	1621	1895	2169	2443	2717	2991
80A	562	732	1064	1428	1793	2158	2522	2887	3252	3616	3981
100A	999	1302	1891	2540	3188	3836	4484	5133	5781	6429	7077
										(kg/h)	
Pressure MPa Nominal size	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	
65A	3264	3538	3812	4086	4360	4364	4908	5182	5456	5730	
80A	4346	4710	5075	5440	5804	6169	6534	6898	7263	7628	
100A	7726	8374	9022	9671	10319	10967	11615	12264	12912	13560	

· For water (accumulation: 25%) <Yoshitake standard>

· For water (accur	nulation	: 25%)	<yoshitake standard=""> (m³/ł</yoshitake>								(m³/h)
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
65A	4.1	5.9	8.3	10.2	11.8	13.2	14.5	15.6	16.7	17.7	18.7
80A	5.5	7.8	11.1	13.6	15.7	17.6	19.3	20.8	22.3	23.6	24.9
100A	9.9	14.0	19.8	24.2	28.0	31.3	34.3	37.0	39.6	42.0	44.3
										(m³/h)	
Pressure MPa Nominal size	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	
65A	19.6	20.5	21.3	22.1	22.9	23.6	24.4	25.1	25.8	26.4	
80A	26.1	27.3	28.4	29.5	30.5	31.5	32.5	33.4	34.3	35.2	
100A	46.4	48.5	50.5	52.4	54.2	56.0	57.8	59.4	61.1	62.6	

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

www.yoshitake.jp

Lift Safety Valve

AL	-5		
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Features

1. Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure.

Specifications

	Structure	Open type with a lever			
A	Application		Steam		
Wor	king pressure	0.05-1.0 MPa	0.05-1.5 MPa		
Maxim	um temperature	220°C			
	Valve case		Ductile cast iron		
Material	Spring case		Ductile cast iron		
Valve, valve seat		Bronze	Stainless steel		
O and a still a		IIS 10K EE flanged	JIS 10K FF flanged		
Connection		JIS TUK FF lianged	JIS 16K FF flanged *		

* JIS 16K FF flanged when working pressure is more than 1.0 MPa.

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions

		Flow area			
Nominal size	L	H1	Н	D	<i>π</i> Dℓ (mm²)
20A	90	75	276	21	34.6
25A	95	90	295	25	49.1
32A	100	95	331	35	96.2
40A	110	105	347	40	125.6
50A	115	110	388	50	196.4

Certified Capacity Table

· For steam (saturation temperature) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
20A	27	35	51	69	87	104	121	138	155	172	189	206	222	239	256	273
25A	38	50	73	98	123	148	172	196	220	244	268	292	316	340	364	387
32A	76	98	143	192	241	290	337	384	431	478	525	572	619	666	713	759
40A	99	128	186	250	315	378	440	502	563	625	686	748	809	870	931	991
50A	155	201	292	392	494	592	689	785	881	977	1073	1169	1265	1360	1456	1551

<Boiler structure standard>

	<boiler standard="" structure=""></boiler>															(kg/h)
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
20A	26	34	50	66	83	98	114	130	146	162	178	194	209	225	241	257
25A	37	49	71	94	117	140	163	185	208	230	253	275	297	320	342	365
32A	74	96	140	185	230	274	319	363	407	451	495	539	583	627	671	715
40A	96	125	183	242	301	358	416	474	532	589	647	704	762	819	876	934
50A	151	196	287	378	471	560	652	742	832	921	1012	1102	1191	1280	1371	1461

• Please refer to P.3 -11 for the calculation procedure for nominal size selection.

At the Time of Ordering

When ordering, please specify with or without lever and the material of the valve body and valve seat in addition to the set pressure.

(kg/h)

Lift Safety Valve

L**-6**

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	s testing products
Diaphragm	Non-leakage		

Features

- Lift safety valve, designed in compliance with JIS B 8210
 "Spring loaded safety valves for steam boilers and pressure vessels".
- Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure.

Specifications

	Structure	Open type with a lever
	Application	Steam
Wo	king pressure	0.05-1.5 MPa *1
Maxim	num temperature	220°C
	Valve case	Ductile cast iron
Material	Spring case	Ductile cast iron
	Valve, valve seat	Cast stainless steel
Connection		JIS 10K FF flanged
	Johneouon	JIS 16K FF flanged *2

*1 Maximum working pressure for 150A is 0.8 MPa.

*2 JIS 16K FF flanged when working pressure is more than 1.0 MPa.

· Please refer to the chart in P.3-76 for set pressure range.

Dimensions and Weights

Newsia et ales		Dimensi	on (mm)		Flow area	
Nominal size	L	H ₁	Н	D	πDℓ (mm²)	vveight (kg)
65A	120	120	479	65	331.9	20.2
80A	130	130 (132)	493 (495)	75	441.8	24.0
100A	160	150 (152)	626 (628)	100	785.4	44.0
125A	200	205 (207)	835 (837)	125	1227.2	88.0
150A	210	215 (217)	845 (847)	150	1767.2	113.0

 \cdot The values in parentheses are the dimensions of JIS 16K FF flanged.

Certified Capacity Table

· For steam (satura	ation	tempe	erature	e) <p< th=""><th>ressu</th><th>re ves</th><th>ssel st</th><th>ructu</th><th>re star</th><th>ndard</th><th>></th><th></th><th></th><th></th><th></th><th>(kg/h)</th><th></th></p<>	ressu	re ves	ssel st	ructu	re star	ndard	>					(kg/h)	
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	
65A	263	340	493	663	834	1000	1165	1328	1489	1651	1814	1976	2138	2299	2461	2621	
80A	350	452	657	882	1111	1331	1550	1767	1983	2198	2415	2631	2846	3060	3276	3489	
100A	622	804	1168	1569	1975	2367	2756	3142	3525	3908	4294	4677	5059	5440	5825	6203	
125A	972	1257	1826	2451	3086	3699	4307	4910	5508	6107	6709	7309	7906	8500	9102	9692	
150A	1400	1810	2629	3530	4445	5327	6203	7071	7932	8794	9661	10525	11385	12241	13107	13957	

· For steam (saturation temperature) < Pressure vessel structure standard>

<Boiler structure standard>

	<body> <body< td=""> Structure standard> Structure standard></body<></body>															(kg/h)
Pressure MPa Nominal size	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5
65A	255	332	486	640	796	947	1101	1254	1407	1557	1710	1862	2013	2164	2317	2469
80A	339	442	647	851	1059	1261	1466	1670	1873	2073	2276	2479	2680	2881	3084	3286
100A	604	786	1150	1514	1884	2242	2607	2968	3330	3686	4047	4407	4765	5122	5483	5843
125A	944	1228	1797	2366	2944	3504	4074	4638	5204	5760	6324	6886	7446	8003	8567	9129
150A	1359	1769	2588	3407	4239	5046	5866	6680	7494	8295	9107	9917	10723	11525	12337	13147

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

Full Bore Safety Valve

AF	-5	,5	S
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	s testing products
Diaphragm	Non-leakage		

Features

- 1. Full bore safety valve with increased safety. Compact and lightweight (about half size of the conventional full bore type safety valve).
- 2. Popping structure ensures reliable discharge.
- A material of excellent quality is used for the trim parts. High performance is maintained by precision processing and heat treatment.
- 4. Corrosion-free due to corrosion-resistant material (the AF-5S is all stainless made, offering high corrosion resistance and durability).
- 5. Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure.

Specifications

	Model	AF	-5	AF-5S					
	Structure		Open type with a lever						
A	Application	Steam	Air, Other non-dangerous fluids	Steam, Air, Other non-dangerous fluids					
Wor	king pressure	0.1-1.6 MPa 0.1-1.0 MPa 0.1-1.0 MPa							
Maximum temperature									
Matorial	Spring case	Cast bro	nze	Cast stainless steel					
Material	Valve, valve seat								
Connection			Inlet: JIS R screwed						
	Johneetton		Outlet: JIS Rc screwed						

Dimensions and Weights

	Inlet diameter x Throat diameter x Outlet diameter	Flow area	Lift		Dimension(mm)	l.	Dhum	Weight
Nominal size	di x dt x do	$\frac{\pi}{4}$ dt ² (mm ²)	R (mm)	L	H ₁	Н	Plug	(kg)
20A	R 1 x 15 x Rc 1	176.6	3.3	38 (40)	61 (62)	136 (163)	R 1/8	1.24 (1.65)
25A	R 1-1/4 x 19 x Rc 1-1/4	283.3	4.4	45 (47)	70 (70)	157 (190)	R 1/8	1.88 (2.35)
32A	R 1-1/2 x 24 x Rc 1-1/2	452.1	5.5	52 (52)	80 (79)	183 (208)	R 1/8	2.62 (2.90)
40A	R 2 x 30 x Rc 2	706.5	6.8	65 (65)	98 (98)	216 (248)	R 1/4	5.10 (5.30)
50A	R 2-1/2 x 38 x Rc 2-1/2	1133.5	8.7	77 (77)	121 (121)	262 (315)	R 1/4	8.40 (9.20)

 \cdot The nominal size and the connection size are different.

· The values in parentheses are the dimensions and weights of the AF-5S.

At the Time of Ordering

When ordering, please inform set pressure and application. (If the application is steam, please also specify Pressure vessel structure standard or Boiler structure standard.)

da

Т

Certified Capacity Table

· For steam (saturation temperature) < Pressure vessel structure standard>

· For steam (saturation																(kg/h)
Pressure MPa Nominal size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
20A	159	231	310	390	468	545	621	697	773	849	925	1001	1076	1152	1227	1303
25A	255	370	498	627	751	875	997	1118	1240	1362	1484	1606	1726	1849	1968	2090
32A	407	591	794	1000	1199	1396	1591	1785	1979	2175	2369	2562	2755	2950	3142	3336
40A	636	925	1242	1563	1874	2182	2487	2790	3093	3398	3702	4005	4306	4611	4910	5213
50A	1021	1484	1992	2508	3007	3501	3991	4477	4963	5453	5940	6425	6909	7398	7877	8364

· AF-5: 0.1 MPa to 1.6 MPa AF-5S: 0.1 MPa to 1.0 MPa

<Boiler structure standard>

	<bolier standard="" structure=""></bolier>															(kg/h)
Pressure MPa Nominal size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
20A	155	227	299	372	443	515	587	659	729	800	872	942	1013	1084	1156	1227
25A	249	365	480	598	711	827	942	1057	1170	1284	1398	1512	1625	1740	1854	1968
32A	398	582	767	954	1136	1320	1503	1687	1867	2050	2232	2413	2594	2777	2959	3141
40A	622	910	1198	1491	1775	2063	2350	2636	2918	3204	3488	3772	4054	4340	4625	4909
50A	998	1461	1923	2393	2848	3311	3770	4229	4681	5140	5597	6052	6505	6963	7420	7876

• For air (20°C) <Pressure vessel structure standard>

For air (20 C) <pressure standard="" structure="" vessel=""> (kg</pressure>													
Pressure MPa Nominal size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
20A	257	374	502	630	759	887	1015	1143	1272	1400			
25A	413	600	806	1011	1217	1423	1629	1835	2040	2246			
32A	659	958	1286	1614	1943	2271	2600	2928	3256	3585			
40A	1030	1497	2010	2523	3036	3550	4063	4576	5089	5602			
50A	1654	2402	3225	4049	4872	5695	6518	7342	8165	8988			

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

Full Bore Safety Valve

AF	-4	,4	
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage)	

Features

Specifications

- Lift safety valve, designed in compliance with JIS B 8210
 "Spring loaded safety valves for steam boilers and pressure
 vessels".
- 2. Larger discharge capacity than lift type.
- 3. Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure (AF-4).
- 4. Blowdown pressure can be adjusted with a back pressure throttle valve.
- 5. A material of excellent quality is used for the trim parts. High performance is maintained by precision processing and heat treatment.

AF-4

AF-4M

	liteaterie						
	Structure	Open type					
	Application	Steam, Air, Other non-dangerous fluids					
Wo	rking pressure	0.1-1.0 MPa					
Maxim	num temperature	220°C					
	Valve case	Ductile cast iron					
Material	Spring case	Ductile cast iron					
	Valve, valve seat	Stainless steel					
Connection		JIS 10K FF flanged					
	Johnection	JIS 10K RF flanged *					

* JIS 10K RF flanged when nominal size is more than 100A.

Dimensions and Weights

Neminal size	Inlet diameter x Throat diameter	Flow area	LiftR		Dimensi	ion (mm)			Flange		Weight
Nominal size	x Outlet diameter	$\frac{\pi}{4}$ dt ² (mm ²)	(mm)	L	H ₁	H∟	Hx	Inlet	T (mm)	Outlet	(kg)
25A	25 x 16 x 40	200.9	3.7	100	100	356	335	25A	26	40A	12
40A	40 x 26 x 65	530.6	6.0	120	120	410	408	40A	28	65A	21
50A	50 x 30 x 75	706.5	6.8	130	130	458	453	50A	30	80A	27
65A	65 x 40 x 100	1256.0	9.0	150	150	514	537	65A	32	100A	41
80A	80 x 49 x 125	1884.7	11.1	165	160	677	648	80A	32	125A	41
100A	100 x 76 x 150	4534.1	16.8	215	200	799	779	100A	32	150A	115
125A	125 x 84 x 200	5538.9	19.1	220	210	858	835	125A	36	200A	135
150A	150 x 100 x 200	7850.0	22.7	250	230	1006	966	150A	38	200A	203

· The connection flange standard is JIS B 2239 10K FF.

At the Time of Ordering

When ordering, please inform set pressure and application. (If the application is steam, please also specify Pressure vessel structure standard or Boiler structure standard.)

<Inlet: JIS 10K FF flanged>

<Inlet: JIS 10K RF flanged>

(kg/h)

(kg/h)

AF-4 (open type with a lever)	AF-4M (open type without a lever)
100A-	-150A

Certified Capacity Table

· For steam (saturation temperature) < Pressure vessel structure standard>

25A-80A

Pressure MPa Nominal size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
25A	181	263	353	444	532	620	707	793	879	966
40A	478	694	932	1174	1407	1638	1868	2095	2323	2552
50A	636	925	1242	1563	1874	2182	2487	2790	3093	3398
65A	1132	1644	2208	2780	3332	3879	4422	4960	5500	6042
80A	1699	2467	3313	4171	4999	5821	6636	7444	8253	9067
100A	4087	5937	7971	10036	12028	14004	15964	17908	19855	21813
125A	4993	7252	9738	12260	14694	17108	19502	21877	24256	26647
150A	7076	10279	13801	17375	20825	24246	27640	31005	34377	37766

<Boiler structure standard>

Pressure MPa 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Nominal size 25A 40A 50A 65A 80A 100A 125A 150A

· For air (20°C) <Pressure vessel structure standard>

For air (20 C) <pressure standard="" structure="" vessel=""> (kg/h)</pressure>													
Pressure MPa Nominal size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0			
25A	293	425	571	717	863	1009	1155	1301	1447	1593			
40A	774	1124	1510	1895	2280	2666	3051	3436	3822	4207			
50A	1030	1497	2010	2523	3036	3550	4063	4576	5089	5602			
65A	1832	2662	3574	4486	5398	6311	7223	8135	9047	9960			
80A	2750	3994	5363	6732	8101	9470	10839	12207	13576	14945			
100A	6616	9610	12903	16196	19489	22782	26076	29369	32662	35955			
125A	8082	11739	15762	19785	23808	27831	31854	35877	39900	43923			
150A	11454	16638	22339	28041	33742	39444	45146	50847	56549	62250			

• Please refer to P.3-11 for the calculation procedure for nominal size selection.

Full Bore Safety Valve

AF	-1		
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure gas	s testing products
Diaphragm	Non-leakage		

Features

- 1. Larger discharge capacity than lift type.
- 2. Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure.

Specifications

	Structure	Open type with a lever						
	Application	Steam						
Working pressure		0.18-1.6 MPa						
Maximum temperature		220°C						
Motorial	Valve case	Ductile cast iron (FCD450)						
Valve, Valve seat		Stainlesssteel						
Connection		Inlet: JIS R screwed Outlet: JIS Rp screwed						

* Rp is a parallel screw applicable to taper pipe thread.

Dimensions and Weights

Nerriselaise	Inlet diameter x Throat diameter x Outlet diameter	Flow area	Lift		Weight			
Nominal size	di x dt x do	$\frac{\pi}{4}$ dt ² (mm ²)	ℓ(mm)	Seat diameter	L	H1	Н	(kg)
20A	R 1 x 15 x Rp 1	176.6	3.3	19	47	67	258	3.0
25A	R 1-1/4 x 19 x Rp 1-1/4	283.3	4.4	23	50	79	297	4.2
32A	R 1-1/2 x 26 x Rp 1-1/2	530.6	6.0	31	62	92	362	7.2
40A	R 2 x 30 x Rp 2	706.5	6.8	37	70	108	408	10.5
50A	R 2-1/2 x 38 x Rp 2-1/2	1133.5	8.7	46	89	123	466	18.5

* The nominal size and the connection size are different.

Certified Capacity Table

· For steam (saturation temperature) <Pressure vessel structure standard>

Nominal size Pressure MPa	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
20A	231	310	390	468	545	621	697	773	849	925	1001	1076	1152	1227	1303
25A	370	498	627	751	875	997	1118	1240	1362	1484	1606	1726	1849	1968	2090
32A	694	932	1174	1407	1638	1868	2095	2323	2552	2780	3008	3234	3463	3687	3915
40A	925	1242	1563	1874	2182	2487	2790	3093	3398	3702	4005	4306	4611	4910	5213
50A	1484	1992	2508	3007	3501	3991	4477	4963	5453	5940	6425	6909	7398	7877	8364

	<boiler standard="" structure=""></boiler>														(kg/h)
Nominal size Pressure MPa	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
20A	227	299	372	443	515	587	659	729	800	872	942	1013	1084	1156	1227
25A	365	480	598	711	827	942	1057	1170	1284	1398	1512	1625	1740	1854	1968
32A	683	900	1120	1333	1550	1764	1980	2191	2406	2620	2833	3045	3259	3473	3687
40A	910	1198	1491	1775	2063	2350	2636	2918	3204	3488	3772	4054	4340	4625	4909
50A	1461	1923	2393	2848	3311	3770	4229	4681	5140	5597	6052	6505	6963	7420	7876

*Please refer to P.3-11 for the calculation procedure of nominal size selection.

(kg/h)

Full Bore Safety Valve

AF	-2	
Full bore type	Lift type	Safety valve Relief valve
Safety relief valve	Lever type	Closed type Dash-pot structure
Handle type	Stainless	High pressure gas testing products
(Diaphragm)	Non-leakage	

Features

- 1. Lift safety valve, designed in compliance with JIS B 8210 "Spring loaded safety valves for steam boilers and pressure vessels".
- 2. Larger discharge capacity than lift type.
- 3. Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of the opening pressure.
- 4. Blowdown pressure can be adjusted with a back pressure throttle valve.
- 5. A material of excellent quality is used for the trim parts. High performance is maintained by precision processing and heat treatment.

Specifications

	Structure	Open type with a lever
	Application	Steam
V	lorking pressure	0.18-1.6 MPa
Max	imum temperature	220°C
	Valve case	Ductile cast iron
Material	Spring case	Ductile cast iron
	Valve, valve seat	Stainless steel
Connection		Inlet: JIS B 8210 10K RF flanged *
	CONTECTION	Outlet: JIS B 2239 10K FF flanged

* JIS B 8210 20K RF flanged when working pressure is more than 1.0 MPa.

Dimensions and Weights

	Inlet diameter v Threat diameter v Outlet diameter	Elow, aroa	1.144	Dimension (mm)			Connection (mm)							Woight
Nominal size	Iniel diameter x mroat diameter x Outlet diameter	$\frac{\pi}{2}$ dt ² (mm ²)	d^{+2} (mm ²) d (mm)				Inlet: JIS B 8210 10K					Outlet	(kg)	
	di x dt x do	4 01- (1111-)			Π1	п	Di	Ci	gi	ti	fi	ni x hi		(KG)
65A	65 x 49 x 90	1884.7	11.1	150	142	630	200	160	105	30	2	8 x 23	1004	50.0
80A	75 x 57 x 100	2550.7	13.0	165	160	682	210	170	125	32	2	8 x 23	TUUA	62.3

Certified Capacity Table

· For steam (saturation temperature) < Pressure vessel structure standard>

Pressure MPa Nominal size	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
65A	2467	3313	4171	4999	5821	6636	7444	8253	9067	9877	10684	11488	12300	13098	13907
80A	3339	4484	5645	6766	7878	8981	10074	11170	12271	13368	14460	15547	16647	17727	18821

<Boiler structure standard>

															(0)
Pressure MPa Nominal size	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6
65A	2429	3198	3978	4735	5505	6269	7033	7784	8547	9306	10063	10816	11578	12338	13096
80A	3287	4328	5385	6409	7451	8484	9518	10535	11567	12595	13619	14638	15669	16698	17725

· Please refer to P.3 -11 for the calculation procedure for nominal size selection.

(ka/h)

ni×hi

φdi φgi

φCi

φDi

(kg/h)

Full Bore Safety Relief Valve

AF	-7	',7	
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage)	

1. Due to lift lever mechanism a discharge inspection can be manually performed at more than 75% of

2. AF-7M is closed type structure which can prevent

AF-7

AF-7M

Specifications

fluid leakage.

the opening pressure.

Features

	Мо	del	AF-7	AF-7M
	Stru	cture	Open type with a lever	Closed type
	Appli	cation	Steam, Air, Other non-dangerous fluids	Air, Other non-dangerous fluids
Wo	orking	pressure	0.1-1.0	DMPa *
Maxir	num t	emperature	350°C	300°C
Motorial	\ \	/alve case	Cast carbon steel	Cast carbon steel
wateria	Valv	/e, Valve seat	Stainlesssteel	Stainlesssteel
Cannad	tion	Inlet	JIS 10K RF flanged	JIS 10K RF flanged
Connec	Suon	Outlet	JIS 10K FF flanged	JIS 10K FF flanged

* Available with working pressure between 1.0 MPa and 1.6 MPa (Inlet: JIS 20K RF flanged).

Dimensions and Weights

Neuriselaine	Inlet diameter x	Throat diameter	Flow area	Lift	L	H1	*H2(mm)	Weight
inominal size	Outlet diameter	dt(mm)	$\frac{\pi}{4}$ dt ² (mm ²)	ℓ (mm)	(mm)	(mm)	AF-7	AF-7M	(kg)
25A	25 x 32	16	200.9	4.0	100	85	226	231	10
40A	40 x 50	25	490.6	6.3	120	110	273	270	20
50A	50 x 65	32	803.8	8.0	135	120	325	321	25
65A	65 x 80	40	1256.0	10.0	160	125	366	361	40
80A	80 x 100	50	1962.5	12.5	170	135	375	370	52
100A	100 x 125	65	3316.6	16.3	205	160	612	580	75

· Both AF-7 and AF-7S are same value except for H₂.

· The connection flange standard is JIS B 2238.

At the Time of Ordering

When ordering, please inform set pressure and application. (If the application is steam, please also specify Pressure vessel structure standard or Boiler structure standard.)

* Structure will be different depends on nominal size.

Certified Capacity Table

· For steam (saturation temperature)

· FOI Steam	(Saturation t	emperature			< 16	ssure	162261 5	structur	e stanu	aru>		(kg/h)
Nieurin et eine	Throat diameter	Flow area				;	Set press	ure (MPa)			
Nominal size	dt (mm) (mm ²)	m) (mm²)		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
25A	16	200.9	181	263	353	444	532	620	707	793	879	966
40A	25	490.6	442	642	862	1085	1301	1515	1727	1937	2148	2360
50A	32	803.8	724	1052	1413	1779	2132	2482	2830	3174	3520	3867
65A	40	1256.0	1132	1644	2208	2780	3332	3879	4422	4960	5500	6042
80A	50	1962.5	1769	2569	3450	4343	5206	6061	6910	7751	8594	9441
100A	65	3316.6	2989	4342	5831	7341	8798	10244	11677	13099	14524	15956

<Boiler structure standard>

<Pressure vessel structure standard>

(kg/h) Set pressure (MPa) Throat diameter Flow area Nominal size dt(mm) (mm^2) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 25A 200.9 40A 490.6 50A 803.8 65A 1256.0 80A 1962.5 100A 3316.6

For air (20°C)

<Pressure vessel structure standard>

Set pressure (MPa) Throat diameter Flow area Nominal size dt(mm) (mm^2) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 25A 200.9 40A 490.6 50A 803.8 65A 1256.0 80A 1962.5 100A 3316.6

· Please refer to P.3 -11 for the calculation procedure of nominal size selection.

(kg/h)

Full Bore Safety Valve

AF-6H,6HS

Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage		

Safety Relief Valve

Features

- Lift safety valve, designed in compliance with JIS B 8210 "Spring loaded safety valves for steam boilers and pressure vessels".
- 2. Corresponds to High Pressure Gas Safety Act.

Specifications

	Model	AF-6H	AF-6HS				
	Structure	Close	d type				
	Application	Air, Other non-dangerous fluids					
V	Vorking pressure	0.1-1.96 MPa					
Ma	kimum temperature	250°	C *1				
Motorial	Valve case, Spring case	Cast carbon steel	Stainless steel				
wateria	Valve, Valve seat	Stellite overlaid	d stainlesssteel				
	Connection	Inlet: JIS 20K RF flanged Outlet: JIS 10K FF flanged *2					

*1 The material of gasket is different depending on fluid and pressure and also temperature specification change.

*2 The inlet flange is thicker than JIS standard value.

Dimensions and Weights

Neminalaina	Inlet diameter x Throat diameter x Outlet diameter	Flow area	area Lift mm²) ℓ(mm)		Dimensio	ons (mm)			Weight		
Nominal size	di x dt x do	$\frac{n}{4}$ dt ² (mm ²)		Seat diameter	L	H1	Н	Inlet	Т	Outlet	(kg)
25A	25 x 19 x 40	283.3	4.4	22	120	106	348	25A	25	40A	15
40A	40 x 30 x 65	706.5	6.8	35	135	126	483	40A	31	65A	26
50A	50 x 38 x 80	1133.5	8.7	44	155	140	528	50A	33	80A	37
65A	65 x 49 x 100	1884.7	11.1	57	170	160	703	65A	34	100A	73
80A	80 x 61 x 125	2920.9	13.8	71	190	180	837	80A	36	125A	111
100A	100 x 76 x 150	4534.1	17.3	88	205	205	935	100A	40	150A	167

 \cdot When ordering, please inform application, pressure, material, flow rates and things as follows.

(1) Name of end user (2) Installing place (3) Normal operation pressure and temperature

[Normal operation pressure and temperature for high-pressure gas means, the maximum pressure and temperature which the gas may transform into normal gas or liquefied gas under normal operation.]

Certified Capacity Table for AF-6H, 6HS

• For air (20°C) <Pressure vessel structure standard>

Pressure MPa Nominal size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
25A	413	600	806	1011	1217	1423	1629	1835	2040	2246
40A	1030	1497	2010	2523	3036	3550	4063	4576	5089	5602
50A	1654	2402	3225	4049	4872	5695	6518	7342	8165	8988
65A	2750	3994	5363	6732	8101	9470	10839	12207	13576	14945
80A	4262	6190	8312	10433	12555	14676	16798	18919	21041	23162
100A	6616	9610	12903	16196	19489	22782	26076	29369	32662	35955

• For air (20°C) <High Pressure Gas Safety Act>

Pressure MPa Nominal size	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
25A	392	598	804	1009	1215	1421	1626	1832	2038	2243
40A	979	1492	2005	2518	3030	3543	4056	4569	5082	5595
50A	1571	2393	3216	4039	4862	5685	6508	7331	8154	8977
65A	2612	3980	5348	6717	8085	9453	10822	12190	13558	14927
80A	4048	6169	8289	10410	12530	14651	16772	18892	21013	23133
100A	6284	9576	12867	16159	19451	22743	26035	29326	32618	35910

· For air (20°C)

										,
Pressure MPa Nominal size	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.96
25A	2449	2655	2860	3066	3272	3477	3683	3889	4094	4221
40A	6108	6621	7134	7647	8160	8673	9186	9698	10211	10528
50A	9800	10623	11446	12269	13092	13915	14737	15560	16383	16892
65A	16295	17663	19031	20400	21768	23136	24505	25873	27241	28087
80A	25254	27375	29495	31616	33736	35857	37978	40098	42219	43529
100A	39202	42494	45785	49077	52369	55661	58953	62244	65536	67570

*Please refer to P.3-11 for the calculation procedure of nominal size selection.

(kg/h)

(kg/h)

(kg/h)

Full Bore Safety Valve

AF	-9		
Full bore type	Lift type	Safety valve	Relief valve
Safety relief valve	Lever type	Closed type	Dash-pot structure
Handle type	Stainless	High pressure ga	s testing products
Diaphragm	Non-leakage)	

Features

- 1. Full bore safety valve of open type.
- 2. Large discharge capacity.
- 3. Due to lift lever mechanism, a discharge inspection can be manually performed at least 80% of working pressure.

Specifications

Model		AF- 9EN								
App	olication	Steam, Air, Other non-dangerous fluids								
Nominal size		20A-100A	125A	150A						
Morkin		0.045-1.6 MPa	0.045-1.25 MPa	0.045-1.0 MPa						
vvorking pressure		* According to P/T rating.								
Max. temperature		250°C								
	Body	Cast Iron								
Motorial	Spring case		Ductile Cast Iron							
wateria	Valve		Stainless steel							
	Valve seat		Stainless steel							
Cor	nantion	Inl	Inlet: PN16, Outlet: PN10							
Connection			EN1092-2							

 Spring replacement does not need any other part replacement but gaskets, however, it requires training by Yoshitake. Only certified person is allowed to replace the spring.

· AF-9EN is not closed type.

 \cdot Please contact us for any further information.

Spring Range

(A)	(B)	(C)	(D)
0.045-0.068	0.066-0.10	0.095-0.14	0.13-0.19
(E)	(F)	(G)	(H)
0.18-0.26	0.25-0.36	0.35-0.50	0.48-0.63
(I)	(J)	(K)	(L)
0.6-0.8	0.75-1.0	0.95-1.25	1.2-1.6

Dimensions and Weights

Nominal	Inlet dia. x Throat	Flow area	Lift	Dimension (mm)			Fla	nge	Weight
size	dia. x Outlet dia .	(mm²)	(mm)	L	H ₁	н	Inlet	Outlet	(kg)
20A	20 x 16 x 32	201	6	85	95	345	20A	32A	7.5
25A	25 x 20 x 40	314	7.5	95	105	395	25A	40A	9
32A	32 x 25 x 50	491	9	100	110	420	32A	50A	13
40A	40 x 32 x 65	804	11.5	115	130	495	40A	65A	19
50A	50 x 40 x 80	1257	14.5	125	145	550	50A	80A	25
65A	65 x 50 x 100	1964	18	140	150	660	65A	100A	37
80A	80 x 63 x 125	3117	23	155	170	710	80A	125A	52
100A	100 x 77 x 150	4657	28	175	180	810	100A	150A	77
125A	125 x 93 x 200	6793	34	215	220	860	125A	200A	90
150A	150 x 110 x 250	9503	40	225	245	990	150A	250A	140

Pressure and Temperature Rating

* This chart shows PT rating of PN16 for cast iron flanges accoding to EN 1092-2.

(MPa)

* Structure will be different depends on nominal size.

Safety Relief Valve 😡

n2-øh2

f2

φq3

n1-øh1

φdı φg φC

φD

Certified Capacity Table for AF-9EN

Outlet flange BSEN PN10 RF					
2 C2	n2-h2				
6 100	4-19				
4 110	4-19				
9 125	4-19				
8 145	4-19				
2 160	8-19				
6 180	8-19				
4 210	8-19				
1 240	8-23				
6 295	8-23				
9 350	12-23				
	2 C2 '6 100 34 110 99 125 8 145 3/2 160 3/4 210 3/4 210 1 240 3/6 295 19 350				

Dimensions (Connection)

Certified Capacity Table · For steam (saturation temperature) <EN ISO 4126-1: 2004>

• For st	eam (s	aturatio	on tem	peratur	'e) <⊵	N ISO 4	126-1:	2004>					(kg/h)
Nominal						Pre	ssure (M	Pa)					
size	0.045	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2
20A	115	164	268	357	446	535	623	711	798	886	974	1,060	1,147
25A	180	256	418	558	697	835	973	1,110	1,247	1,384	1,521	1,657	1,792
32A	282	401	654	872	1,090	1,306	1,521	1,736	1,950	2,165	2,378	2,590	2,802
40A	461	656	1,071	1,428	1,784	2,139	2,491	2,843	3,193	3,545	3,894	4,242	4,588
50A	721	1,026	1,674	2,233	2,790	3,344	3,895	4,445	4,993	5,542	6,089	6,631	7,173
65A	1,127	1,603	2,615	3,489	4,359	5,225	6,086	6,945	7,801	8,659	9,513	10,361	11,208
80A	1,788	2,545	4,150	5,537	6,918	8,292	9,658	11,021	12,381	13,742	15,098	16,444	17,787
100A	2,672	3,802	6,201	8,273	10,336	12,389	14,430	16,467	18,498	20,531	22,558	24,568	26,575
125A	3,897	5,546	9,045	12,067	15,077	18,072	21,049	24,019	26,982	29,948	32,904	35,837	38,764
150A	5,452	7,758	12,654	16,881	21,092	25,282	29,446	33,602	37,746	41,896	46,031	—	-

• For Air (20°C) <EN ISO 4126-1: 2004>

Nominal							Pre	essure (M	Pa)						
size	0.045	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.4	1.6
20A	185	258	426	573	720	866	1,013	1,159	1,306	1,452	1,599	1,746	1,892	2,185	2,478
25A	289	404	666	895	1,124	1,353	1,582	1,811	2,040	2,269	2,498	2,727	2,956	3,414	3,872
32A	451	631	1,042	1,400	1,758	2,116	2,474	2,832	3,190	3,548	3,906	4,264	4,622	5,338	6,054
40A	739	1,033	1,706	2,292	2,878	3,464	4,051	4,637	5,223	5,810	6,396	6,982	7,568	8,741	9,913
50A	1,156	1,615	2,667	3,583	4,500	5,416	6,333	7,250	8,166	9,083	9,999	10,916	11,833	13,666	15,499
65A	1,806	2,524	4,166	5,598	7,031	8,463	9,895	11,327	12,759	14,191	15,624	17,056	18,488	21,352	24,217
80A	2,866	4,005	6,612	8,885	11,158	13,431	15,704	17,977	20,250	22,523	24,796	27,069	29,342	33,887	28,433
100A	4,281	5,984	9,879	13,275	16,671	20,067	23,463	26,859	30,254	33,650	37,046	40,442	43,838	50,630	57,422
125A	6,245	8,729	14,410	19,364	24,317	29,271	34,224	39,178	44,131	49,085	54,038	58,992	63,945	_	—
150A	8,737	12,212	20,159	27,089	34,018	40,948	47,878	54,807	61,737	68,666	75,596	_	_	_	_

(kg/h)

Safety Relief Valve – Annex

• Abstract of "Steam boilers and pressure vessels - Spring loaded safety valves"	3 -66
Calculation method of certified capacity for safety valve	3 -67
• Abstract of "Construction code for pressure vessels"	3 -70
Abstract of "Construction code for boilers"	3 -72

(MPa)

(MPa)

Safety Relief Valve – Annex

Abstract of JIS B 8210 "Steam boilers and pressure vessels-Spring loaded safety valves"

🕂 Warning	Do not apply the product to devices which do not allow any valve seat leakage. * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).
	Please refer to the manual attached to the product for procedures for installation and operation.

■Capability

1. Tolerance of start to discharge pressure

\cdot Safety valve for steam

There is no regulation for start to discharge pressure of safety valve for steam.

· Safety valve for gas

Tolerance of start to discharge pressure of safety valve for gas is $\pm 5\%$ (however, ± 0.025 MPa in minimum). If exceeding set pressure is not acceptable, add absolute value of positive side to one of negative. For gas, set pressure is generally start to discharge pressure.

2. Tolerance of opening (popping) pressure

Safety valve for steam

Opening pressure tolerance of safety valve for steam is shown in Table-1 below. If exceeding set pressure is not acceptable, add absolute value of positive side to one of negative.

Table-1 Opening pressure tolerance of safety valve

for steam	(MPa)
Set pressure	Tolerance
Less than 0.5	±0.015
0.5-2.29	±(3% of set pressure)
2.3-6.99	±0.07
7.0 or more	± (1% of set pressure)

Note 1) As to safety valve for steam, set pressure is generally start to discharge pressure.

 Opening pressure tolerance of safety valve for steam except for boilers is ±3% (however, ±0.015 MPa in minimum).

· Safety valve for gas

Opening pressure tolerance of safety valve for gas is less than 1.1 times of start to discharge pressure. However, to set by set pressure, opening pressure tolerance is $\pm 3\%$ (± 0.015 MPa in minimum) of set pressure.

3. Blowdown

· Safety valve for steam

Opening of safety valve for steam is shown in Table-2 below. If discharge pressure of safety valve for steam, which is used for through flow boiler, reheater and piping, exceeds 0.3 MPa, blowdown can be less than 10% of set pressure.

Table-2 Blowdown of safety valve for steam

Set pressure	Blowdown						
0.4 or less	0.03						
More than 0.4	7% (4%) or less of set pressure						

Note 1) As to safety valve for gas, blowdown is generally difference between start to discharge pressure and closing pressure.

2) If there is an agreement between the parties, the value in () can be applied.

Safety valve for gas

Blowdown of safety valve for gas is shown in Table-3 below.

Table-3 Blowdown of safety valve for gas

Cationageura	Blow	down
Set pressure	Metal seat type	Soft seat type
0.2 or less	0.03 or less	0.05 or less
More than 0.2	15% or less of set pressure	25% or less of set pressure

Note 1) As to safety valve for gas, blowdown is generally difference between start to discharge pressure and closing pressure. However, to set by start to discharge pressure, it is difference between opening pressure and closing pressure.

2) As to the definitions of metal seat type and soft seat type

2) As to the definitions of metal seat type and soft seat type, see JIS B 0100.

· Safety valve for liquid (Yoshitake standard)

Blowdown of safety valve for liquid is shown in Table-4 below.

Table-4 Blowdown of safety valve for liquid (MPa)

		(
Cationageura	Blow	down
Set pressure	Metal seat type	Soft seat type
0.2 or less	0.03 or less	0.05 or less
More than 0.2	15% or less of set pressure	25% or less of set pressure

Note 1) As to the definitions of metal seat type and soft seat type, see JIS B 0100.

Calculation Methods of Certified Capacity for Safety Valve

 Marning
 Do not apply the product to devices which do not allow any valve seat leakage.

 * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).

 CAUTION
 Please refer to the manual attached to the product for procedures for installation and operation.

1. Certified capacity for safety valve for steam

- To calculate by certified coefficient of discharge, use the following formula:
 - Qm = 5.25 x C" x Kdr x AP
 - Qm: Certified capacity (kg/h)
 - A: Flow area (mm²)
 - P: For boiler, (set pressure x 1.03 + 0.101) or (set pressure + 0.015 + 0.101), whichever larger.
 For pressure vessel, (set pressure x 1.1 + 0.101) or (set pressure + 0.020 + 0.101), whichever larger.
 However, if allowable over pressure is specified, it shall be followed.
 - Kdr: Certified derated coefficient of discharge (= measured value x 0.9)
 - C': Coefficient depending on the properties of steam, which is shown in Table-5 on page 3-68.

(2) If not measuring certified coefficient of discharge, calculate certified capacity using the value of Kdr' in Fig. 1 below instead of Kdr in (1). For full bore type safety valve, use Kdr' = 0.777.

Fig. 1 Coefficient of discharge Kdr'

Calculation Methods of Certified Capacity for Safety Valve

🕂 Warning

Do not apply the product to devices which do not allow any valve seat leakage. * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).

CAUTION

Table-5 Coefficient depending on properties of steam (C')

Please refer to the manual attached to the product for procedures for installation and operation.

	540 560 580 600 620 640 660 700	0.742 0.733 0.724 0.715 0.706 0.698 0.690 0.682 0.675	0.743 0.734 0.725 0.716 0.707 0.699 0.691 0.683 0.675	0.745 0.735 0.726 0.717 0.708 0.699 0.691 0.684 0.676	0.746 0.736 0.727 0.717 0.709 0.700 0.692 0.684 0.676	0.747 0.737 0.728 0.718 0.709 0.701 0.693 0.685 0.677	0.748 0.738 0.729 0.719 0.710 0.702 0.693 0.685 0.678	0.751 0.741 0.731 0.721 0.712 0.703 0.695 0.687 0.679	0.753 0.743 0.733 0.723 0.714 0.705 0.696 0.688 0.680	0.756 0.745 0.735 0.725 0.715 0.706 0.698 0.689 0.681	0.759 0.748 0.737 0.727 0.717 0.708 0.699 0.690 0.682	0.762 0.750 0.739 0.729 0.719 0.709 0.701 0.691 0.683	0.765 0.753 0.741 0.731 0.721 0.711 0.702 0.693 0.685	0.767 0.755 0.744 0.733 0.723 0.713 0.703 0.695 0.686	0.773 0.761 0.748 0.737 0.726 0.716 0.707 0.697 0.688	0.780 0.766 0.753 0.741 0.730 0.720 0.710 0.700 0.691	0.786 0.772 0.758 0.746 0.734 0.723 0.713 0.703 0.694	0.793 0.778 0.764 0.751 0.738 0.727 0.716 0.706 0.696	0.801 0.785 0.769 0.756 0.743 0.731 0.720 0.709 0.699	0.809 0.791 0.775 0.761 0.747 0.735 0.723 0.712 0.702	0.817 0.798 0.783 0.767 0.752 0.740 0.727 0.716 0.705	0.827 0.805 0.787 0.772 0.757 0.742 0.731 0.719 0.708	0.834 0.813 0.794 0.777 0.762 0.748 0.734 0.721 0.711	0.841 0.821 0.800 0.782 0.764 0.752 0.737 0.725 0.714	0.852 0.827 0.807 0.788 0.771 0.754 0.743 0.728 0.715	0.862 0.837 0.813 0.793 0.776 0.758 0.747 0.730 0.719	0.872 0.844 0.819 0.800 0.781 0.762 0.749 0.735 0.724	0.881 0.852 0.826 0.805 0.786 0.766 0.751 0.740 0.725	0.892 0.861 0.834 0.810 0.790 0.770 0.755 0.743 0.726	0.906 0.871 0.841 0.817 0.795 0.775 0.759 0.746 0.729	0.918 0.881 0.849 0.823 0.802 0.781 0.7623 0.750 0.733	0.928 0.893 0.857 0.831 0.807 0.787 0.767 0.755 0.741
Temperature °C	360 380 400 420 440 460 480 500 520	33 0.848 0.834 0.821 0.808 0.796 0.784 0.773 0.763 0.752	57 0.852 0.837 0.824 0.810 0.798 0.786 0.775 0.764 0.753	1 0.855 0.843 0.826 0.813 0.800 0.788 0.777 0.765 0.755	5 0.859 0.844 0.829 0.815 0.802 0.790 0.778 0.767 0.756	80 0.863 0.847 0.832 0.818 0.805 0.792 0.780 0.769 0.758	0.867 0.850 0.835 0.821 0.807 0.794 0.782 0.770 0.759	5 0.875 0.857 0.841 0.826 0.811 0.798 0.785 0.773 0.762	0.884 0.865 0.847 0.831 0.816 0.802 0.789 0.776 0.765	7 0.893 0.873 0.854 0.837 0.821 0.807 0.793 0.780 0.768	30 0.904 0.881 0.861 0.843 0.826 0.811 0.797 0.783 0.771	4 0.915 0.890 0.869 0.849 0.832 0.816 0.801 0.787 0.774	000.9270.9000.8770.8560.8370.8200.8050.7910.777	2 0.941 0.911 0.885 0.863 0.843 0.825 0.809 0.794 0.780	77 0.973 0.935 0.904 0.878 0.856 0.836 0.818 0.802 0.787	0.982 0.964 0.926 0.896 0.870 0.848 0.828 0.811 0.795	1.005 1.001 0.952 0.916 0.886 0.861 0.839 0.820 0.802	1.044 1.007 0.977 0.933 0.903 0.875 0.851 0.829 0.811	1.036 1.011 0.958 0.917 0.890 0.863 0.840 0.819	1.081 1.038 0.989 0.937 0.903 0.877 0.851 0.828	1.068 1.024 0.963 0.919 0.888 0.863 0.839	1.116 1.065 0.989 0.940 0.902 0.873 0.849	1.185 1.105 1.022 0.962 0.917 0.886 0.856	1.142 1.059 0.986 0.936 0.898 0.869	1.180 1.103 1.015 0.956 0.912 0.880	1.154 1.042 0.974 0.928 0.891	1.210 1.075 0.998 0.946 0.903	1.112 1.023 0.961 0.918	1.152 1.047 0.980 0.933	1.075 1.001 0.947	1.104 1.021 0.961	1.135 1.045 0.978
	Saturation 200 220 240 260 280 300 320 340 pressure	1.004 0.994 0.971 0.950 0.931 0.912 0.895 0.879 0.863	0.986 0.980 0.982 0.960 0.938 0.919 0.900 0.883 0.867	0.976 0.975 0.969 0.969 0.946 0.825 0.906 0.888 0.871	0.971 0.966 0.963 0.955 0.932 0.912 0.893 0.875	0.968 0.960 0.965 0.940 0.918 0.898 0.880	0.966 0.948 0.925 0.904 0.884	0.964 0.957 0.953 0.939 0.915 0.895	0.965 0.955 0.952 0.929 0.905	0.968 0.943 0.917	0.971 0.959 0.954 0.930	0.975 0.968 0.956 0.944	0.980	0.987 0.962	1.000	1.019	1.039	1.068	1.100	1.136												
Absolute	pressure MPa	0.5	-	1.5	2	2.5	ო	4	5	9	7	ø	0	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46

ומר וא כמוכטומנפט שע ארטאטרוטוו Note 1) Intermediate value of pressure and temperature in this chart is calculated by proportior 2) Absolute pressure shall be absolute value of pressure to determine discharge capacity.

Calculation Methods of Certified Capacity for Safety Valve

κ Warning	Do not apply the product to devices which do not allow any valve seat leakage. * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).
	Please refer to the manual attached to the product for procedures for installation and operation.

2. Certified capacity for safety valve for gas

(1) To calculate by certified coefficient of discharge, use the following formula:

Qm = C" x Kdr x P₁ x A x Kb x
$$\sqrt{\frac{M}{ZT}}$$

Qm: Certified capacity (kg/h)

C": Coefficient depending on adiabatic exponent (k), calculated by the following formula:.

$$C" = 39.48 \left(\sqrt{\frac{2}{k+1}} \right)^{\frac{k+1}{k-1}}$$

If adiabatic exponent (k) is unknown, setting k = 1.001, C'' = 23.96

P1: Absolute flow rating pressure (MPa)

 P_1 = (set pressure x 1.1 + 0.101) or (set pressure + 0.020 + 0.101), whichever greater. However, if allowable over pressure is specified, it shall be followed.

Kdr: Certified derated coefficient of discharge (= measured value x 0.9)

A: Flow area (mm²)

M: Molecular weight of gas (kg/kmol)

Z: Compression coefficient shown in Table 2 (if unknown, Z = 1.0)

T: Absolute temperature of gas under flow rating pressure (K)

Kb: Corrective coefficient of back pressure

$$\begin{split} &\text{In case of } \frac{P_2}{P_1} > \left(\frac{2}{k+1}\right)^{\frac{k}{k+1}} \\ &\text{Kb} = \frac{55.83}{C''} \sqrt{\frac{k}{(k-1)'} \left(\left(\frac{P_2}{P_1}\right)^{\frac{2}{k}} - \left(\frac{P_2}{P_1}\right)^{\frac{k+1}{k}}\right)} \\ &\text{In case of } \frac{P_2}{P_1} \leq \left(\frac{2}{k+1}\right)^{\frac{k}{k+1}} \\ &\text{Kb} = 1.0 \end{split}$$

(2) If not measuring certified coefficient of discharge, calculate certified capacity using the value of Kdr' in Fig. 2 below instead of Kdr in (1). For full bore type safety valve, set Kdr = 0.777.

Abstract of "Construction code for pressure vessels"

🕂 Warning	Do not apply the product to devices which do not allow any valve seat leakage. * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).
	Please refer to the manual attached to the product for procedures for installation and operation.

<Reference>

[Definition of Class-1 pressure vessel]

- The vessels heating solids or liquids by receiving vapor or other heat media or by generating vapor, those having an internal pressure exceeding the atmospheric pressure (dizestor, sterilizer, etc);
- The vessels generating vapor by chemical, nuclear or other reactions, those having an internal pressure exceeding the atmospheric pressure (autoclave, reactor, etc);
- The vessels for generating vapor by heating liquids contained therein to separate components of the said liquids, those with an internal pressure exceeding the atmospheric pressure (distiller, evaporator);
- The vessels containing liquids at a temperature exceeding their boiling points at the atmospheric pressure (steam accumulator).

[Definition of Class-2 pressure vessel]

The vessels containing gas with a gauge pressure of 0.2 MPa or more (excluding the class-1 pressure vessels) listed in followings:

- 1. The vessels with an inner cubic volume of 0.04 m³ or more;
- The vessels with a drum having inner diameter of 200 mm or more and length 1,000 mm or more (air tank, drying roller, high pressure gas tank, steam receiver, deaerator, vacuum evaporator, etc).

[The vessels which excluded from application of CONSTRUCTION CODE FOR PRESSURE VESSEL]

- vessels used at a gauge pressure of 0.1 MPa or less with an inner cubic volume of 0.04 m³ or less or with an inner diameter of 200 mm or less and the length 1,000 mm or less;
- vessels of the maximum operating gauge pressure expressed in MPa multiplied by the internal cubic volume expressed in m³ are 0.004 or less.

(Safety Valves and Alternative Safety Devices) Article 64.

- 1. Any Class-1 pressure vessel shall be equipped with a safety valve or an alternative safety device for each of those parts which are subject to exposure to different levels of pressure, to ensure that the internal pressure working on any of such parts will not rise above the maximum allowable working pressure. However, this provision does not apply to those parts of a Class-1 pressure vessel (other than a reactor) which are connected with a boiler or some other source of pressure and of which the maximum allowable working pressure is not lower than that of such pressure source.
- Safety valves for Class-1 pressure vessels shall be attached to those parts of the vessel itself or of its tubing which are easily accessible for checkup purposes, and shall be installed in such a manner that their stems will be upright.
- Safety valves for those Class-1 pressure vessels in which flammable or toxic vapours may be generated shall be hermetically sealed or so configured that they can burn, absorb or otherwise dispose of such vapours safely.

52 Related to Article 64

- (1) Related to paragraph 1
- A. Capacity of safety valve and other safety equipment shall be in accordance with the provision of 12.1.6 (1) of JIS B 8270. However, the provisions pertaining to (2) and (3) in the same provision shall not be applied.

B. Regarding pressure vessel equipped with more than two safety valve, a part of it shall be able to be made to safety valve with a spring pilot. In this case, half or more of total discharge capacity of safety valve required for the above pressure vessel shall be by spring type safety valve other than safety valve with spring pilot.

The above safety valve with spring pilot shall work securely by steam pressure on the place the above safety valve is installed on.

C. In case that pipe side (the side connecting to distillation column) of normal pressure distillation column reboiler is open for atmosphere via the distillation column and condenser as shown in the figure below, and maximum using pressure on pipe side is over than pressure under part of distillation column, safety valve does not need to be installed to pipe side of reboiler pursuant to the proviso of paragraph 1.

In case that heating and evaporating liquid by water vapor for jaketted pressure vessel, and maximum using pressure on the side of liquid to be heated is over than saturated pressure of the liquid at maximum temperature of heating water vapor, it is acceptable even if safety device is not installed on the side of the liquid to be heated.

- D. Reactor vessel without factor raising pressure inside shall be excluded from reactor vessel of the proviso of paragraph 1.
- E. Discharge capacity of safety valve shall be over than maximum capacity of gas flowing into pressure vessel or maximum capacity of gas generating inside pressure vessel, and as calculation method, for example, the following shall be considered:

(a) Maximum amount of flow-in gas shall be calculated by the following formula:

 $G = 0.0028 \text{ vpd}^2$

- In this formula, G, v, p and d shall mean following value by each:
- G Gas sending amount (unit: kg/h)
- Flow velocity of gas. 20 or more for saturated steam, 30 or more for overheated steam, and 10 or more for normal gas (unit: m/s)
- p Density of gas (unit: kg/m³)
- d Inner diameter of piping (unit: mm)

Abstract of "Construction code for pressure vessels"

 Marning
 Do not apply the product to devices which do not allow any valve seat leakage.

 * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).

 CAUTION
 Please refer to the manual attached to the product for procedures for installation and operation.

(b) Maximum evaporation amount of direct fire type Class-1 pressure vessel shall be calculated by the following formula:

```
W = \frac{HQ \eta}{i_1 - i_2}
```

 $\left[\text{ In this formula, W, H, Q, } \eta \text{ , } i_1 \text{ and } i_2 \text{ shall mean following value by each:} \right]$

W Maximum evaporation amount of steam (unit: kg/h)

- H Heat generation amount of fuel (unit: kJ/kg)
- Q Use amount of fuel (unit: kg/h)
- η Heat efficiency of the above pressure vessel
- i_1 Enthalpy of generating steam (unit: KJ/kg)
- $i_{\scriptscriptstyle 2}$ Enthalpy that internal liquid had before heating (unit: KJ/kg)
- F. As calculation method for discharge capacity of safety valve for steam, for example, there shall be a method according to the stipulation of JIS B 8210 appendix (Calculation method of certified capacity for safety valve).
- G. As "other safety device", for example, there shall be following things:
 - (a) Device which stops pressure rise automatically.
 - (b) Pressure reducing valve with safety valve is installed at its outlet side.
 - (c) Alarm device with safety valve used.
 - (d) Relief valve (limited to its nominal size is 15 mm or more) or relief pipe.

For relief valve, the term "0.02 MPa" in 12. 1. 6 (1) of JIS B 8270 shall be deemed to be replaced with "0.034 MPa".

- (e) Rapture disc (limited to the case that content of pressure vessel makes working of safety valve difficult)
- H. Pressure regulating device, temperature regulating device, etc shall not fall on (a) of G.
- I. It shall be acceptable to install stop valve between pressure vessel and safety valve in (b) of G.
- J. F and the provision of Article 65 shall not apply to the safety device stipulated in (b) and (c) of G.
- K. Rapture disc in (e) of G shall conform to the stipulation of JIS B 8226 (rapture disc type safety device).
- L. Because it is difficult to gurantee the maximum usage pressure of steam accumulator by safety valve, in case that the maximum usage pressure of system accumilator is smaller than the muximum usage pressure of boiler, safety device in (b) of G shall be installed.
- M. Regarding vessels of indirect heating such as coloring tank or strage tank, in case that vapor does not almost originate on heated side of high temperature fluid, it is acceptable to admit relief valve as alternative safety device of safety valve. Also, regarding relief valve installed on strage tank etc, it is acceptable to consider that there is no limitation about valve diameter.
- N. In case of installing safety valve on piping annexed on

Class-1 pressure vessel, closing device such as relief valve shall not be installed between safety valve and vessel. Provided, however, that this shall not apply when the case falls under any of the followings:

- (a) In case that installing the device equipped with two or more safety valve, and, they cannot be closed on the same time.
- (b) As for workplace that head of relevant labor standards supervision office admits performance check can be conducted during operation, regarding Class-1 pressure vessel installed on the said workplace, is always open other than when closing devices are closed during minimum necessary time for inspection or repair of safety valve, and, in order to prevent this from being operated without reason, locked, sealed or implementing measures of the same as or more than them, and also, installing the plate indicating no-operation.

Moreover, when closing devices are closed, implement all the measures as follows:

- Operation of the said Class-1 pressure vessel shall be made stable, and operation condition shall not be changed;
- ②Pressure of the said Class-1 pressure vessel and related equipment shall be monitored in any time, and measures at the time of pressure abnormal rise shall be prepared in advance.
- ③If removing safety valve for the purpose of inspection or repair, preparing spare safety valve in advance, measures to shorten closing time as possible shall be implemented such as rapid installation.
- (2) Related to Article 3

As "structure can be treated safely", there shall be structures that eliminate danger of catching fire or explosion, for example, dispersing steam blown from safety valve to the places without fire or other things can become ignition source such as altitude of outdoors.

(April 30, 2003 Labor Standards Bureau Notification No. 0430004)

Abstract of "Construction code for boilers"

🕂 Warning	Do not apply the product to devices which do not allow any valve seat leakage. * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).
	Please refer to the manual attached to the product for procedures for installation and operation.

(Safety Valve)

Article 62.

- Steam boilers shall be equipped with at least two safety valves to ensure that its internal pressure will never exceed the maximum allowable working pressure. For those steam boilers which have a heating surface area not larger than 50 m², however, the number of safety valves to be installed may be reduced to one.
- Safety valves shall be attached directly to proper parts of the boiler itself which are easily accessible for inspections and care shall be taken to ensure that their spindles will be upright.
- 3. All safety valves, when used for steam boilers generating flammable vapours, shall be either hermetically sealed or so configured as to send exhausts from them into a safe place outside the boiler room.

43 Related to Article 62

(1) Related to paragraph 1

- A. As capacity of safety valve can maintain internal pressure at maximum usage pressure or less, for example, there shall be capacity according to the stipulation of 15.1 in JIS B 8201 (except for the stipulations after annex).
- In this case, the term "35 kPa" in the same stipulation shall be deemed to be replaced with "0.034 MPa".
- B. Discharge capacity of safety valve for steam boiler shall be maximum evaporation amount of the said boiler or more. If maximum evaporation amount is not clear, it shall be obtained from actual measurement of fuel consumption amount, etc. However, if it burns wood debris and it is difficult to obtain maximum evaporation amount, it is acceptable to follow the table below:

	Evaporation amount per heat-transfer area 1 m ² (unit: kg/h)													
Kind of boiler		Boiler	· body	Water-cooled furnace wall										
	Hand firing	Stoker firing	Burning of oil, gas or pulverized coal	Hand firing	Stoker firing	Burning of oil, gas or pulverized coal								
Boiler other than water tube boiler	25	35	40	40	50	70								
Water tube boiler	30	40	50	40	60	80								

In addition, maximum evaporation amount of waste heat boiler shall be calculated on the basis of flow rate of waste gas and specific enthalpy of waste gas.

- C. As a method to calculate discharge capacity of safety valve of steam bolier, for example, there shall be a method according to the stipulation of annex 2 of JIS B 8210 (Spring safety valve for steam and for gas), and moreover, this shall be according to (a) and (b) as follows:
 - (a) To decide discharging coefficient by measurement, it shall be nominal discharge coefficient stipulated in JIS B 8210 (Safety valves-Measuring methods for coefficient of discharge), or coefficient decided by method can be deemd equal to this.
 - (b) In case that steam pressure is less than 0.4 MPa and fluid is saturated steam, coefficient by steam character (C) shall be C value at temperature corresponding to steam pressure 0.4 MPa in table 1 of JIS B 8210 annex.
- D. As method to calculate discharge capacity of safety valve of dowtherm boiler, for example, there shall be a method according to the stipulation of annex 3 of JIS B 8210. Regarding flow rating pressure, absolute pressure value of 1.1 times as much as designed pressure or absolute pressure value which is designed pressure added to 0.02 MPa, whichever greater.
- E. Because flow area of lift type safety valve is π DI (D: diameter of valve seat hole, I: lift), if sectional area of steam incoming port π D'2/4 (D': diameter of steam incoming port) is larger than this value, it shall be acceptable that D'<D. However, if D' is too small, rapid change of steam flow velocity shall be prevented.
- F. As nominal diameter of safety valve of steam boiler, for example, nominal size shall be 25A or more. In this case, regarding safety valve of steam boiler according to the stipulation of 15.6 in JIS B 8201, and full bore type safety valve and lift type safety valve with lift which is 1/15 or more of seat diameter. Its nominal size shall be able to be made 20A or more.
- G. To install more than one safety valve on the common pipe mount, sectional area of steam passage on the mount shall be equal to or larger than sum of total area of steam incoming port of safety valve. However, total area of safety valve is less than effective sectional area but equal to or larger than area of safety valve required for boiler, it is acceptable to admit it.
 (2) Related to paragraph 3
- (2) Related to paragraph 3 "Safety place" shall mean high place
 - "Safety place" shall mean high place at outdoors, without fire or other ignitable articles, and the place where danger of ignition and explosion of steam by diffusion can be eliminated.

(April 30, 2003 Labor Standards Bureau Notification No. 0430004)

(Relief Valve or Safety Valve for Hot Water Boilers) Article 65.

- 1. Any hot water boiler not exceeding 120°C in working water temperature shall be equipped with a relief valve that is immediately actuated whenever the pressure in the boiler reaches the maximum allowable working pressure and keeps the internal pressure not exceeding the maximum allowable working pressure. However, this provision does not apply where a water relief pipe that keeps the internal pressure not exceeding the maximum allowable working pressure is installed at the part of such boiler which is easily accessible for inspections.
- 2. Hot water boilers exceeding 120°C in working water temperature shall be equipped with a safety valve.
Abstract of "Construction code for boilers"

 Warning
 Do not apply the product to devices which do not allow any valve seat leakage.

 * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).

 CAUTION
 Please refer to the manual attached to the product for procedures for installation and operation.

46 Related to Article 65

(1) As relief valve or relief pipe in accordance with paragraph 1, for example, there shall be followings:

- A. For relief valve, nominal size (15A at smallest) and quantity shall be decided without exceeding the value of hot water boiler pressure plus 10% or more of maximum usage pressure (0.034 MPa when this value is less than 0.034 MPa). Size of relief valve shall be on annex 1 "calculation formula to determine the size of relief valve for hot water".
- B. Internal diameter of relief pipe shall conform to the stipulation of 15. 15 in JIS B 8201.
- (2) As safety valve equipped with hot water boiler in paragraph 2, for example, nominal size shall be 20A or more and 100A or less, and its discharge capacity calculation shall conform to annex 2 of JIS B 8210. However, in this case, evaporation amount (unit: kg/ h) shall be the value obtained by dividing heat output by difference between specific enthalpy of saturated steam corresponding to maximum usage pressure and specific enthalpy of water supply.
- (3) Regarding hot water boiler using heat medium such as oil, in case that temperature of the said heat medium exceeds boiling point at atmospheric pressure, it shall be handled as what safetey valve is installed on in conformity with paragraph 2. However, as discharge capacity in this case, for example, it shall conform to the stipulation of JIS B 8210 annex 3, and steam amount (unit kg/ h) in this case shall be the value obtained by dividing heat output by difference between specific enthalpy of saturated steam corresponding to maximum usage pressure and specific enthalpy of water supply.

(April 30, 2003 Labor Standards Bureau Notification No. 0430004)

- \cdot Reference: calculation formula to determine the size of relief valve for hot water (related to boilers)
- (1) Using required discharge capacity of valves

$$S = \frac{W}{87.7\sqrt{(P_1 + 0.1)\kappa\gamma_1}} \cdots (1)$$

- W : Required discharge capacity of valve (kg/h)
- P₁: Discharge capacity deciding pressure⁽¹⁾ (MPa)
- κ : Difference between saturated temperature ts°C of discharge capacity deciding pressure P₁ and hot water temperature at inlet side of valve Δt°C correction coefficient for t1°C, conforming to Table 1.
- γ 1: Density of hot water at inlet side of valve (kg/l), conforming to Table 1.

However, at formula 1, if the value of (P₁ + 0.1) κ MPa exceeds the value of difference between discharge capacity deciding pressure P1 MPa and pressure at outlet side of valve P2 MPa, (P₁ + 0.1) κ shall be replaced by (P₁ - P₂) and calculated.

(Notice)⁽¹⁾ The said discharge capacity deciding pressure means, at construction code for boilers and construction code for pressure vessels, the set pressure of relief valve plus the value corresponding to its 10% (0.034 MPa at minimum).

Remark

Only for hot water boiler, relief valve for hot water is applied to in case that hot water temperature is 120°C or less. Exceeding 120°C, according to the article 65 paragraph 2 of construction codes for boilers, safety valve shall be equipped. Its largeness can be obtained by the formula to calculate discharge capacity of safety valve stipulated in L, second, 43 (1) 3. In this case, according to the article 65 paragraph 2 of construction codes for boilers, required discharge capacity of safety valve W (kg/h) is obtained by the following formula:

$$W = \frac{Q}{h_1 - h_2}$$

- Q: Heat output (kJ/h)
- h₁: Enthalpy of saturated steam corresponding to maximum usage pressure of boiler (kJ/kg)
- h2: Enthalpy of water supply (kJ/kg)

$$S = \frac{Q\varepsilon}{87.7C\sqrt{(P_1 + 0.1)\kappa\gamma_1}} \cdots (2)$$

- Q : Heat input of pressure vessel or heat output of boiler for hot water (kJ/h)
- ε : Coefficient of volume expansion for water, conforming to Table 2.
- C : Specific heat at constant pressure for water (kJ/kg °C)

\land Warning

Do not apply the product to devices which do not allow any valve seat leakage. * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).

N Please refer to the manual attached to the product for procedures for installation and operation.

Table-6 Density of hot water

Pressure MPa·A Temperature °C	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.5
40	0.992	0.992	0.992	0.993	0.993	0.993	0.993	0.993	0.993	0.993	0.993	0.993	0.993
50	0.988	0.988	0.988	0.988	0.988	0.988	0.989	0.989	0.989	0.989	0.989	0.989	0.989
60	0.983	0.983	0.983	0.983	0.983	0.984	0.984	0.984	0.984	0.984	0.984	0.984	0.984
70	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.979	0.979	0.979
80	0.972	0.972	0.972	0.972	0.972	0.972	0.972	0.972	0.972	0.972	0.973	0.973	0.973
90	0.965	0.965	0.965	0.965	0.965	0.966	0.966	0.966	0.966	0.966	0.966	0.966	0.966
100		0.985	0.958	0.958	0.958	0.959	0.959	0.959	0.959	0.959	0.959	0.959	0.959
110		0.951	0.951	0.951	0.951	0.951	0.951	0.951	0.951	0.951	0.952	0.952	0.952
120		0.943	0.943	0.943	0.943	0.943	0.943	0.943	0.944	0.944	0.944	0.944	0.944
130			0.935	0.935	0.935	0.935	0.935	0.935	0.935	0.935	0.935	0.936	0.936
140			0.926	0.926	0.926	0.926	0.926	0.926	0.927	0.927	0.927	0.927	0.927
150				0.917	0.917	0.917	0.917	0.917	0.917	0.918	0.918	0.918	0.918
160					0.907	0.908	0.908	0.908	0.908	0.908	0.908	0.908	0.908
170					0.897	0.897	0.898	0.898	0.898	0.898	0.898	0.898	0.898
180							0.887	0.887	0.887	0.887	0.888	0.888	0.888
190								0.876	0.876	0.876	0.877	0.877	0.877
200									0.865	0.865	0.865	0.865	0.865
210											0.853	0.853	0.853
220													0.841

Remark Intermediate value of this table shall be calculated by proportional method.

Fig. 3 Correction coefficient κ

(kg/L)

Safety Relief Valve – Annex

🕂 Warning	Do not apply the product to devices which do not allow any valve seat leakage. * The product has allowable valve seat leakage and does not close completely (valve seat leakage cannot be zero).
	Please refer to the manual attached to the product for procedures for installation and operation.

Table-7 Specific heat at constant pressure and coefficient of volume expansion

	•
Specific heat at constant pressure kJ/kg°C	Coefficient of volume expansion L/°C
4.179	0.00039
4.181	0.00046
4.185	0.00053
4.190	0.00060
4.197	0.00066
4.205	0.00072
4.216	0.00079
4.229	0.00085
4.245	0.00090
4.263	0.00097
4.285	0.00103
4.310	0.00110
4.339	0.00118
4.371	0.00126
4.408	0.00134
4.449	0.00145
4.497	0.00155
4.551	0.00165
4.613	0.00179
	Specific heat at constant pressure kJ/kg°C 4.179 4.181 4.185 4.190 4.197 4.205 4.216 4.229 4.245 4.263 4.310 4.339 4.371 4.408 4.449 4.4351

Remark Intermediate value of this table shall be calculated by proportional method.

Apply Pressure Classification List for Each Safety Valve Model

Model	Nominal size	А	В	С	D	E	F	G	Н
AL-150·150L·140	15A	0.05-0.2	0.21-0.3	0.41-0.55	0.56-0.75	0.76-1.0			
	20A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.6	0.61-0.75	0.76-1.0		
	25A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.55	0.56-0.8	0.81-1.0		
	32A	0.05-0.2	0.21-0.3	0.41-0.65	0.66-1.0				
	40A•50A	0.05-0.2	0.21-0.3	0.41-0.65	0.66-0.8	0.81-1.0			
	15A		0.01 0.4				1.0-1.6		
AL-150H	20A•25A							1.0-1.6	
	32A					1.0-1.6			
	40A•50A						1.0-1.6		
AL-140H	15A						1.0-1.3	1.31-2.0	
	20A•25A							1.0-1.6	1.61-2.0
	32A					1.0-1.6	1.61-2.0		
	40A•50A						1.0-1.6	1.61-2.0	
	15A	0.05-0.2	0.21-0.4	0.41-0.55	0.56-0.75	0.76-1.0			
	20A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.6	0.61-0.75	0.76-1.0		
AL-150T-150T-N-150TR	25A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.55	0.56-0.8	0.81-1.0		
AL-1501ML-1401	32A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-1.0				
	40A•50A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-0.8	0.81-1.0			
AL-17·27	15A-50A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-1.0	1.01-1.6			
	15A-40A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-1.0				
AL-10	50A	0.05-0.1	0.21-0.4	0.41-0.65	0.66-1.0				
	15A	0.05-0.2	0.21-0.4	0.41-0.55	0.56-0.75	0.76-1.0			
	20A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.6	0.61-0.75	0.76-1.0		
AL-250-250R	25A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.55	0.56-0.8	0.81-1.0		
AL-200-200H	32A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-1.0				
	40A•50A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-0.8	0.81-1.0			
AL-300-301	15A-50A	0.05-0.25	0.26-0.5	0.51-0.75	0.76-1.6				
AL-300T·301T	15A-50A	0.05-0.25	0.26-0.5	0.51-0.75	0.76-1.3				
	15A·20A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.6	0.61-0.75	0.76-1.0		
AL 200	25A	0.05-0.2	0.21-0.35	0.36-0.45	0.46-0.55	0.56-0.8	0.81-1.0		
AL-200	32A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-1.0				
	40A•50A	0.05-0.2	0.21-0.4	0.41-0.65	0.66-0.8	0.81-1.0			
	65A	0.05-0.1	0.11-0.25	0.26-0.55	0.56-1.0	1.01-1.5			
AL-4·4T	80A-125A	0.05-0.1	0.11-0.2	0.21-0.4	0.41-0.8	0.81-1.5			
	150A	0.05-0.1	0.11-0.2	0.21-0.4	0.41-0.8				
AL-AS-AST	65A	0.05-0.1	0.11-0.25	0.26-0.55	0.56-1.0	1.01-2.0			
AL-45-451	80A•100A	0.05-0.1	0.11-0.2	0.21-0.4	0.41-0.8	0.81-1.6	1.61-2.0		
	20A	0.05-0.12	0.13-0.21	0.22-0.35	0.36-0.63	0.64-0.99	1.0-1.5		
	25A	0.05-0.08	0.09-0.15	0.16-0.25	0.26-0.45	0.46-0.75	0.76-1.0	1.01-1.1	1.11-1.5
AL-5	32A	0.05-0.08	0.09-0.17	0.18-0.25	0.26-0.45	0.46-0.75	0.76-1.0	1.01-1.1	1.11-1.5
	40A	0.05-0.08	0.09-0.15	0.16-0.4	0.41-0.7	0.71-1.0	1.01-1.1	1.11-1.5	
	50A	0.05-0.09	0.1-0.25	0.26-0.5	0.51-0.7	0.71-1.0	1.01-1.1	1.11-1.5	
	65A	0.05-0.1	0.11-0.25	0.26-0.55	0.56-1.0	1.01-1.5			
	80A	0.05-0.1	0.11-0.2	0.21-0.4	0.41-0.8	0.81-1.0	1.01-1.5		
AL-6	100A	0.05-0.1	0.11-0.2	0.21-0.4	0.41-0.8	0.81-1.0	1.01-1.5		
	125A	0.05-0.1	0.11-0.2	0.21-0.4	0.41-0.8	0.81-1.0	1.01-1.5		
	150A	0.05-0.1	0.11-0.2	0.21-0.4	0.41-0.8	0.76.0.05		101 10	
	15A	0.05-0.15	0.16-0.25	0.36-0.45	0.56-0.65	0.76-0.85	1.0-1.3	1.61-2.0	
AL-31-31H	20A	0.05-0.2	0.21-0.3		0.31-0.4	0.51-0.7	0.71-1.0	1.0-1.3	1.61-2.0
	25A	0.05-0.2	0.21-0.3	0.31-0.45	0.46-0.55	0.66-0.8	0.81-1.0	1.0-1.6	1.61-2.0
	32A - 50A	0.05-0.2	0.21-0.3	0.31-0.5	0.51-0.65	0.66-0.8	0.81-1.0	1.0-1.6	1.61-2.0